Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:40:54.171Z Has data issue: false hasContentIssue false

Large Magnetoresistance Anisotropy in Strained Pr0.67Sr0.33MnO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

H. S. Wang
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
Y. F. Hu
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
E. Wertz
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
Qi Li
Affiliation:
Department of Physics, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

We have studied the anisotropic magnetoresistance (AMR) of strained Pr0.67Sr0.33MnO3 thin films by measuring the MR as a function of the angle between the magnetic field direction and the substrate normal (out-of-plane). The results show that the compressive- and tensile-strained ultrathin films (5-15 nm) grown on LaAlO3 (001) (LAO) and SrTiO3 (001) (STO) substrates show unusually large out-of-plane AMR, but with opposite signs. In contrast, the almost strainfree films on the NdGaO3 (110) substrates show much smaller AMR over all the temperature and field ranges studied. Thick films on LAO and STO substrates also show much smaller AMR.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bertran, H. Neal, “The physics of magnetic recording”, Applied Magnetism, ed. Gerber, R., Wright, C. D., and Asti, G., (Kluwer Acadmic Publishers, 1992).Google Scholar
2. Rijks, Th. G. S. M., Coehoom, R., Jong, M. J. M. de, and Jonge, W. J. M. de, Phys. Rev. B51, 283 (1995);Google Scholar
Rijks, Th. G. S. M., Lenczowski, S. K. J., Coehoorn, R., and de Jonge, W. J. M., ibid. B56, 362 (1997).Google Scholar
3. Dahlberg, E. Dan, Riggs, K., and Printz, G. A., J. Appl. Phys. 63, 4270 (1988).Google Scholar
4. Ruediger, U., Yu, J., Zhang, S., Kent, A. D., and Parkin, S. S. P., Phys. Rev. Lett. 80, 5639 (1998).Google Scholar
5. O'Donnell, J., Rzchowski, M. S., Eckstein, J. N., and Bozovic, I., Appli. Phys. Lett. 74, 1775 (1998).Google Scholar
6. Eckstein, J. N., Bozovic, I., O'Donnell, J., Onellion, M., and Rzchowski, M. S., Appl. Phys. Lett. 69, 1312 (1996).Google Scholar
7. Susuki, Y., and Hwang, H. Y., J. Appl. Phys. 85, 4797 (1999).Google Scholar
8. Wolfmnan, J., Prellier, W., Simon, Ch., and Mercey, B., J. Appl. Phys. 83, 7186 (1998).Google Scholar
9. Ziese, M., and Sena, S. P., J. Phys.: Condens. Matter 10, 2727 (1998).Google Scholar
10. Zeng, X. T., and Wong, H. K., Appl. Phys. Lett. 72, 740 (1998).Google Scholar
11. Wang, H. S., and Li, Qi, Appl. Phys. Lett. 73, 2360 (1998).Google Scholar
12. Wang, H. S., Li, Qi, Liu, Kai, and Chien, C. L., Appl. Phys. Lett. 74, 2212 (1999).Google Scholar
13. Wang, H. S. et al. , unpublished.Google Scholar