Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:25:23.723Z Has data issue: false hasContentIssue false

Large Grain Growth of Silicon Films on Low Temperature Glass Substrates

Published online by Cambridge University Press:  28 February 2011

C. E. Bleil
Affiliation:
Electronics Department, General Motors Research Laboratories Warren, MI 48090-9057
J. R. Troxell
Affiliation:
Electronics Department, General Motors Research Laboratories Warren, MI 48090-9057
Get access

Abstract

Argon laser recrystallization of silicon films deposited on low temperature glass substrates offers the potential for development of large scale matrix addressable displays incorporating on-glass line drivers and logic circuitry. In order to achieve this promise, the challenge of containing molten silicon, at 1685 K, in close proximity to a glass substrate (Corning 7059) which has an annealing temperature of 914 K, must be met. We have successfully recrystallized areas of several squared millimeters of 500 nm thick silicon films without cracking on 7059 glass substrates. This was achieved by the incorporation of multiple film layers interposed between the silicon and the glass substrate, which serve to control the thermal gradients which occur during the recrystallization process. Grains in the recrystallized films are typically 10µm wide and several hundred µm long, achieved using a laser spot size of approximately 70 µµµµm diameter and a scan rate of 15 cm/s. Comparable results were obtained for a wide range of laser powers, from 7.5 to 9.2 W.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Colinge, J.P., Demoulin, E., Bensahel, D. and Auvert, G., Appl. Phys. Lett. 41, 346 (1982).Google Scholar
2.Cline, H.E. and Anthony, T.R., J. Appl. Phys., 48, 3895 (1977).Google Scholar
3.Colinge, J.P., Demoulin, E., Bensahel, D., Auvert, G. and Morel, H., IEEE Electron Devices Lett., EDL4, 75 (1983).Google Scholar
4.Hawkins, W.G., Black, J.G. and Griffiths, C.H., Appl. Phys. Lett., 40, 319 (1982).Google Scholar
5.Lemons, R.A., Bosch, M.A., Dayem, A.H., Grogan, J.K. and Mankiewich, P.M., Appl. Phys. Lett., 40, 469 (1982).Google Scholar
6.Paulson, W.M. and Wilson, S.R., J. Electronic Materials, 12, 107 (1983).Google Scholar
7.Bleil, C.E. and R, J., Troxell, Mat. Res. Soc. Symp. Proc. 35, 687 (1985).Google Scholar
8.Lax, M., J. Appl. Phys., 48, 3919 (1977).Google Scholar
9.Lax, M., Appl. Phys. Lett., 33, 786 (1978).Google Scholar
10.Liau, Z.L., Tsaur, B.Y. and Mayer, J.W., Appl. Phys. Lett., 34, 221 (1979).Google Scholar
11.Gold, R.B. and Gibbons, J.F., J. Appl. Phys., 51, 1256 (1980).Google Scholar
12.Meyer, J.R., Kruer, M.R. and Bartoli, F.J., J. Appl. Phys., 51, 5513 (1980).Google Scholar
13.Nissim, Y.I., Lietoila, A., Gold, R.B. and Gibbons, J.F., J. Appl. Phys., 51, 274 (1980).Google Scholar
14.Cline, H.E., J. Appl. Phys., 54, 2683 (1983).Google Scholar
15.Moody, J.E. and Hendel, R.H., J. Appl. Phys., 53, 4364 (1982).Google Scholar
16.Yablonovitch, E. and Gmitter, T., Mat. Res. Soc. Symp. Proc. 23, 389 (1984).Google Scholar
17.Incropera, F.P. and DeWitt, D.P., Fundamentals of Heat Transfer, (John Wiley & Sons, New York, 1983) pp. 763768.Google Scholar
18.Omachi, Y., Nishioka, T. and Shinoda, Y.. Aool. Phys. Lett., 43, 971 (1983).Google Scholar
19.Kawamura, S., Sasaki, N., Nakano, M. and Takagi, M., J. Appl. Phys., 55, 1607 (1984).Google Scholar
20.American Institute of Physics Handbook, 2nd Ed., Gray, D. E., ed. (McGraw-Hill, New York, 1963) pp. 4-64 thru 474.Google Scholar
21.Corning Glass Works Material Information Bulletin, 7059 Glass, March, 1977.Google Scholar
22.Wolf, H. F., Silicon Semiconductor Data, (Pergamon, Oxford, 1969) p. 642.Google Scholar