Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:09:21.720Z Has data issue: false hasContentIssue false

Langmuir Layers of Magnetic Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Sara A. Majetich
Affiliation:
Julie Gardener Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Madhur Sachan
Affiliation:
Julie Gardener Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Shihai Kan
Affiliation:
Julie Gardener Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Yuhang Cheng
Affiliation:
Julie Gardener Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Julie Gardener
Affiliation:
Julie Gardener Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Get access

Abstract

Methods to form magnetic nanoparticle monolayers using non-aqueous Langmuir layers are reported. Following a discussion of the driving forces in various self-assembly techniques, we describe how aqueous Langmuir layers can be modified for use in conjunction with oxidationsensitive nanoparticles. Monolayers are formed using Fe and–Co nanoparticles, and transferred to carbon-coated transmission electron microscopy grids using the Langmuir-Schaefer method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dimitrov, A.S. and Nagayama, K., Langmuir 12, 13031311 (1996).Google Scholar
2. Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270, 1335 (1995).Google Scholar
3. Korgel, B. A., Fullam, S., Connolly, S., and Fitzmaurice, D., J. Phys. Chem. B 102, 8379 (1998).Google Scholar
4. Tang, J., Ge, G., and Brus, L.E., J. Phys. Chem. B 106, 5653 (2002).Google Scholar
5. Ohara, P.C., Heath, J.R., and Gelbart, W.M., Angew. Chem. Int. Ed. Engl., 36, 10781083 (1997).Google Scholar
6. Kirkwood, J.G., J. Chem. Phys. 7, 919 (1939).Google Scholar
7. Alder, B.J., Hoover, W.G., and Young, D.A., J. Chem. Phys. 49, 3688 (1968).Google Scholar
8. Wang, Z.L., Adv. Mater. 10, 1330 (1998).Google Scholar
9. Talapin, D.V., Shevchenko, E.V., Kornowski, A., Gaponik, N., Haase, M., Rogach, A.L., and Weller, H., Adv. Mat. 13, 1868 (2001).Google Scholar
10. Farrell, D., Ding, Y., Majetich, S.A., Sanchez-Hanke, C., and Kao, C.C., J. Appl. Phys. 95, 6636 (2004).Google Scholar
11. Farrell, D., Cheng, Y., Ding, Y., Yamamuro, S., Sanchez-Hanke, C., Kao, C.-C., and Majetich, S. A., J. Mag. Mag. Mater. 282, 15 (2004).Google Scholar
12. Giersig, M. and Mulvaney, P., J. Phys. Chem. 24, 63346336 (1993).Google Scholar
13. Dabbousi, B.O., Murray, C.B., Rubner, M.F., and Bawendi, M.G., Chem. Mater. 6, 216219 (1994).Google Scholar
14. Santhanam, V. Liu, J., Agrawal, R., Andres, R.P., Langmuir 19, 7881 (2003).Google Scholar
15. Fried, T., Scherrer, G., and Markovich, G., Adv. Mater. 13, 11581161 (2001).Google Scholar
16. Farrell, D., Majetich, S.A., and Wilcoxon, J.P., J. Phys. Chem. 107, 1102211030 (2003).Google Scholar
17. Puntes, V.F., Zanchet, D., Erdonmez, C.K., Alivisatos, A.P., J. Am. Chem. Soc. 124, 12874 (2002).Google Scholar
18. Bao, Y., Beerman, M., Krishnan, K.M., J. Magn. Magn. Mater. 266, L245 (2003).Google Scholar