Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:35:13.994Z Has data issue: false hasContentIssue false

Laboratory Testing of the Corrosion of Waste Glasses in Aqueous Environments - Effects of Experimental Parameters

Published online by Cambridge University Press:  25 February 2011

AA. Barkatt
Affiliation:
The Catholic University of America, Washington, DC 20064
Jing C. Sang
Affiliation:
The Catholic University of America, Washington, DC 20064
S.-B. Xing
Affiliation:
The Catholic University of America, Washington, DC 20064
Yan Guo
Affiliation:
The Catholic University of America, Washington, DC 20064
I. L. Pegg
Affiliation:
The Catholic University of America, Washington, DC 20064
AL. Barkatt
Affiliation:
The Catholic University of America, Washington, DC 20064
Get access

Abstract

Many types of procedures have been developed for testing of the chemical durability of nuclear waste forms. These procedures differ from each other in critical aspects, such as duration, replenishment or non-replenishment of the leachates, and S/V ratio. As a result, different answers to basic questions, such as how waste-form leachability depends on its chemical composition, are obtained when different test methods are used. Furthermore, the possibility that some glasses may exhibit a leach rate excursion within the test period causes the composition dependence to be an even more sensitive function of test duration and of leachant replenishment. These factors also complicate the use of test data for the prediction of long-term waste form behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grambow, B., Jercinovic, M.J., Ewing, R.C. and Byers, C.D., Mat. Res. Soc. Symp. Proc., 50, 263272 (1985).CrossRefGoogle Scholar
2 Mendel, J.E. et al. , Final Report of the Defense High-Level Waste Leaching Mechanisms Program, PNL-5157, Pacific Northwest Laboratory, Richland, WA, 1984, Chap. 2.CrossRefGoogle Scholar
3 Freeborn, W.P. and White, W.B., Adv. Ceram., 8, 368376 (1984).Google Scholar
4 Mazer, J.J., Temperature Effects on Waste Glass Performance, ANL-91/17, Argonne National Laboratory, Argonne, IL, 1991.CrossRefGoogle Scholar
5 Pederson, L.R., Buckwalter, C.Q., McVay, G.L. and Riddle, B.L., Mat. Res. Soc. Symp. Proc., 15, 4754 (1983).CrossRefGoogle Scholar
6 Feng, X., Pegg, I.L.. Guo, Y., Barkatt, A. and Macedo, P.B., Mat. Res. Symp. Proc., 176, 383392 (1990).CrossRefGoogle Scholar
7 Cunnane, J.C. and Bates, J.K., Mat. Res. Soc. Symp. Proc., 212, 885892 (1991).CrossRefGoogle Scholar
8 Bates, J. K., this volume.Google Scholar
9 Mellinger, G.B., Mat. Res. Soc. Symp. Proc., 84, 483490 (1987).CrossRefGoogle Scholar
10 Bibler, N.E. and Bates, J.K., Mat. Res. Soc. Symp. Proc., 176, 327338 (1990).CrossRefGoogle Scholar
11 Hespe, E.D., At. Ener. Rev., 9, 195207 (1971).Google Scholar
12 Long-Term Leach Testing of Radioactive Waste Solidification Products, International Standard ISO/DIS 6961, International Standards Organization, 1980.Google Scholar
13 Barkatt, A., Macedo, P.B., Sousanpour, W., Barkatt, Al., Boroomand, M.A., Fisher, C.F., Shirron, J.J., Szoke, P., and Rogers, V.L., Nucl. Chem. Waste Manage., 4, 153169 (1983).CrossRefGoogle Scholar
14 Jantzen, C.M. and Plodinec, M.J., J. Non-Cryst. Solids, 67, 207223 (1984).CrossRefGoogle Scholar
15 Grambow, B., Mat. Res. Soc. Symp. Soc., 44, 1527 (1985).CrossRefGoogle Scholar
16 Werme, L.O. and Grambow, B., Mat. Res. Soc. Symp. Proc., 84, 2943 (1984).CrossRefGoogle Scholar
17 Barkatt, Aa., Gibson, B.C., Macedo, P.B., Montrose, C.J., Sousanpour, W., Barkatt, Al., Boroomand, M.-A., Rogers, V.L. and Penafiel, L.M., Nucl. Tech., 73, 140164 (1986).CrossRefGoogle Scholar
18 Freude, E., Grambow, B., Lutze, W., Rabe, H. and Ewing, R.C., Mat. Res. Soc Symp. Proc., 44, 99106 (1984).CrossRefGoogle Scholar
19 Barkatt, Aa., Barkatt, Al., Pehrsson, P.E., Szoke, P., and Macedo, P.B., Nucl. Chem. Waste Manage., 2, 323 (1981).CrossRefGoogle Scholar
20 Feng, X., Bates, J.K., Bradley, C.R. and Buck, E.C., Mat. Res. Soc. Symp. Proc., 294, 207214 (1993).CrossRefGoogle Scholar
21 Van Iseghem, P. and Grambow, B., Mat. Res. Soc. Symp. Proc., 112, 631639 (1988).CrossRefGoogle Scholar
22 Ebert, W.L., Bates, J.K., Buck, E.C. and Bradley, C.R., Mat. Res. Soc. Symp. Proc., 294, 569576 (1993).CrossRefGoogle Scholar
23 Barkatt, Aa., Olszowka, S.A., Sousanpour, W., Adel-Hadadi, M.A., Adiga, R., Barkatt, Al., Marbury, G.S., and Li, S., Mat. Res. Soc. Symp. Proc., 212, 6576 (1991).CrossRefGoogle Scholar
24 Sang, J.C., Barkatt, A., Talmy, I.G. and Norr, M.K., Mat. Res. Soc. Symp. Soc., 294, 583589 (1993).CrossRefGoogle Scholar
25 Barkatt, A., Sang, J.C., Jakubik, R.F. and Saad, E.E., J. Non-Cryst. Solids, 155, 141148 (1993).CrossRefGoogle Scholar
26 Bonniaud, R.A., Jacquet Francillon, N.R., Laude, F.L. and Sombret, C.G., in Ceramics in Nuclear Waste Management, ed. T.D. Chikalla and J.E. Mendel, CONF-790420, US Department of Energy, Washington, DC, 1979, pp. 57–61.Google Scholar
27 Feng, X., Pegg, I.L., Barkatt, Aa., Macedo, P.B., Cucinell, S.J., and Lai, S., Nucl. Tech, 85, 334345 (1989).CrossRefGoogle Scholar
28 Abrajano, T.A. Jr., Bates, J.K. and Bohlke, J.K., Mat. Res. Soc Symp. Proc., 125, 383392 (1988).CrossRefGoogle Scholar