Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-20T00:23:29.292Z Has data issue: false hasContentIssue false

Korringa-Kohn-Rostoker Electronic Structure Method for Space-Filling Cell Potentials

Published online by Cambridge University Press:  25 February 2011

A. Gonis
Affiliation:
Departnettt of CIteiistry and Materials Science Lawrence Livermore National Laboratory, Livermore, CA 94550
W. H. Butler
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory P.O.Box 2008, Oak Ridge, TN 37831-6114
X.-G. Zhang
Affiliation:
Center for Computational Sciences, University of Kentucky, Lexington, KY 40506-0045
Get access

Abstract

The multiple scattering theory (MST) method of Korringa, and of Kohn and Rostoker for determining the electronic structure of solids, originally developed in connection with potentials bounded by noa-overlapping spheres (Muffin-tin (MT) potentials), is generalized to the case of space-filling potential cells of arbitrary shape through the use of a variational formalism. This generalized version of MST retains the separability of structure and potential characteristic of the application of MST to MT potentials. However, in contrast to the MT case, different forms of MST exhibit different convergence rates for the energy and the wave function. Numerical results are presented which illustrate the differing convergence rates of the variational and nonvariatonal forms of MST for space-filling potentials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Korringa, J., Physica 13, 392 (1947).Google Scholar
2. Kohn, W. and Rostoker, N., Phys. Rev. 94, 1111 (1954).Google Scholar
3. Moruzzi, V. L., Janak, J. F., and Williams, A. R., Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978)Google Scholar
4. Williams, A. R. and. van, J. Morgan, W., J. Phys. C 7, 37 (1974).CrossRefGoogle Scholar
5. Brown, R. G. and Ciftan, M.d, Phys. Rev. B 27, 4564 (1983).CrossRefGoogle Scholar
6. John, W., Lehmann, C., and Ziesche, P., Phys. Status Sol. B 53, 287 (1972).Google Scholar
7. Ziesche, P. and Lehmann, G., Ergebnisse in der Electronentheorie der Metalle (Akademie-Verlag, Berlin, (1983), p. 151.Google Scholar
8. Ziesche, P., J. Phys. C 7, 1085 (1974).Google Scholar
9. Ferreira, L. G.. Agostino, A., and Lida, D., Phys. Rev. B 14, 354 (1976).Google Scholar
10. Scheire, L., Physica A 81, 613 (1975).Google Scholar
11. Brown, I.R. G. and Ciftan, M., Phys. Rev. B 32, 3454 (1985).Google Scholar
12. Badralexe, E. and Freeman, A. J., Phys. Rev. B 36, 1378 (1987).; 36, 1389 (1987); 36, 1401 (1987); 38, 10469 (1988).Google Scholar
13. Keister, B. D., Am. J. Phys. 149, 162 (1983).Google Scholar
14. Faulknmr, J. S.. Phys. Rev. B 32, 1339 (1985).; 38, 1686 (1988).Google Scholar
15. Gonis, A., Phys. Rev. B 33, 5914 (1986).Google Scholar
16. Zeller, R., J. Phys. C 20, 2347 (1987).Google Scholar
17. Zeller, R., Phys. Rev. B 38, 5993 (1988).CrossRefGoogle Scholar
18. Molenaar, J., J. Phys. C 21, 1455 (1988).CrossRefGoogle Scholar
19. Nesbet, R. K., Phys. Rev. B 30, 4230 (1984).; 33, 3027 (1986).Google Scholar
20. Nesbet, R. K.. Phys. Rev. B 41. 49–48 (1990).Google Scholar
21. Gonis, A., Zhang, X.-G., and Nicholson, D. M., Plhys. Rev. B 38, 3564 (1988).Google Scholar
22. Gonis, A., Zhang, X.-G., and Nicholson, D. M., Phys. Rev. B 40, 947 (1989).CrossRefGoogle Scholar
23. Zhang, X.-G. and Gonis, A., Phys. Rev. B 39, 10373 (1989).Google Scholar
24. Butler, W. H. and Nesbet, R. K., Phys. Rev. 42, 1518 (1990).Google Scholar
25. Yeh, Chin-Yu, Chen, A-B., Nicholson, D. M., and Butler, W. H., Phys. Rev. B 42, 10976, (1990)Google Scholar
26. Strumtt, J. W. (Lord Rayleigh), Theory of.Soumid, Volumne 1, sec.88, reprinted by Dover Publicat.ioms. New York. (1945).Google Scholar
27. Ritz, W., J. Reimue Angew. Math. 135. 1 (1908).Google Scholar
28. Butler, W. H., Gonis, A. and Zhang, X.-C., to be submitted.Google Scholar
29. Danos, M. and Maximon, L. C., J. Math. Phys. bf 6, 766 (1965).Google Scholar
[*] The value and gradient cannot both be arbitrarily specified over the entire boundary for then the system will be overdetermined.Google Scholar
30. Butler, W. H. and Nesbet, R. K., Phys. Rev. 42, 1518 (1990).Google Scholar