Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:51:21.714Z Has data issue: false hasContentIssue false

Kinetics of the C49 TO C54 Phase Transformation in TiSi2 thin Films on Deep-Sub-Micron Lines

Published online by Cambridge University Press:  15 February 2011

J. A. Kittl
Affiliation:
D. A. Prinslow
Affiliation:
Semiconductor Process and Device Center, Texas Instruments Inc., Dallas, TX 75243
P. P Apte
Affiliation:
Semiconductor Process and Device Center, Texas Instruments Inc., Dallas, TX 75243
M. F. Pas
Affiliation:
Semiconductor Process and Device Center, Texas Instruments Inc., Dallas, TX 75243
Get access

Abstract

The kinetics of the TiSi2 C49 to C54 phase transformation in thin films on patterned deepsub- micron lines, were studied to obtain the full time, temperature and linewidth dependence of the fraction transformed during rapid thermal annealing. A Johnson-Mehl-Avrami kinetic analysis was performed, obtaining Avrami exponents of 0.8±0.2 for all sub-micron lines and 1. 9±0.2 for a 40 μm side square structure, indicating heterogeneous nucleation followed by one dimensional growth for the narrow lines, and two dimensional growth for the square structure. The activation energy, of 3.9 eV, was independent of linewidth in the sub-micron range. Transformation times increased dramatically for decreasing linewidth, as the linewidth approached the grain size of the starting C49 phase. A kinetic model based on the density of nucleation sites as a function of linewidth and C49 grain size is proposed and shown to fit the data, for samples with two different C49 grain sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chapman, R. A., Wei, C. C., Bell, D. A., Aur, S., Brown, G. A. and Haken, R. A., IEDM Tech. Dig. 1991, 489 (1991).Google Scholar
[2] Maex, K., Mater Sci. and Engineering RI 1, 53 (1993).Google Scholar
[3] Jeon, H., Sukov, C. A., Honeycutt, J. W., Rozgonyi, G. A. and Nemanich, R. J., J. Appl. Phys. 71, 4269 (1992).Google Scholar
[4] Lasky, J. B., Nakos, J. S., Cain, O. J. and Geiss, P. J., IEEE Trans. Electron Devices ED-38, 262 (1991).Google Scholar
[5] Roy, R. A., Clevenger, L. A., Cabral, C. Jr., Saenger, K. L., Brauer, S., Jordan-Sweet, J., Bucchignano, J., Stephenson, G. B., Morales, G. and Ludwig, K. F., Jr., Appl. Phys. Lett. 66, 1732 (1995).Google Scholar
[6] W van Houtum, H. J., Raaijmakers, I. J. M. M. and Menting, T. J. M., J. Appl. Phys. 61, 3116 (1987).Google Scholar
[7] Beyers, R., Coulman, D. and Merchant, P., J. Appl. Phys. 61, 5110 (1987).Google Scholar
[8] Ma, Z. and Allen, L. H., Phys. Rev. B 49, 13501 (1994).Google Scholar
[9] Ma, Z., Ramanath, G. and Allen, L. H., Mater. Res. Soc. Symp. Proc. 320, 361 (1994).Google Scholar
[10] Mann, R. W. and Clevenger, L. A., J. Electrochem. Soc. 141, 1347 (1994).Google Scholar
[11] Christian, J. W., The Theory of Transformations in Metals and Alloys, Part I, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
[12] Kittl, J. A., Prinslow, D. A., Apte, P. P. and Pas, M. F., Appl. Phys. Lett. 67, 2308 (1995).Google Scholar
[13] Turnbull, D. and Treaftis, H. N., Acta Metall. 3, 43 (1955).Google Scholar
[14] Kittl, J. E., Serebrinsky, H. and Gomez, M. P., Acta Metall. 15, 1703 (1967).Google Scholar
[15] Kittl, J. E. and Massalski, T. B., Acta Metall. 15, 161 (1967).Google Scholar