Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T19:14:46.910Z Has data issue: false hasContentIssue false

Kinetics of Relaxation at the Liquid-Glass Transition

Published online by Cambridge University Press:  26 February 2011

Laurent J. Lewis*
Affiliation:
Département de physique et Groupe de recherche sur les couches minces, Université de Montréal, C.P. 6128, Succursale A, Montréal, Québec, Canada H3C 3J7
Get access

Abstract

We use molecular-dynamics simulations to investigate relaxation processes near the liquid-glass transition for a realistic model of the metal-metalloid system Ni80P20. We find that relaxation proceeds in two stages, excluding phonons: fast (or conformational) relaxation, related to local rearrangements of atoms, and slow relaxation, connected with atomic transport, i.e. diffusion. These processes are usually referred to as β and α, respectively. Our simulations show that diffusion exists even in the glass state, where it proceeds mostly by jumps, in contrast to the liquid phase where it is continuous. This relaxation mechanism is well described by a stretched exponential (Kohlrausch) law, in accord with recent modecoupling theories for supercooled liquids. The fast relaxation regime, on the other hand, does not appear to be well described by the theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review, see Jäckle, J., Rep. Prog. Phys. 49, 171 (1986).Google Scholar
2. Bengtzelius, U., Götze, W., and Sjölander, A., J. Phys. C 17, 5915 (1984); E. Leutheusser, Phys. Rev. A 29, 2765 (1984); H. De Raedt and W. Götze, J. Phys. C 19, 2607 (1986); W. Götze and L. Sjögren, Z. Phys. B 65, 415 (1987); W. Götze and L. Sjögren, J. Phys. C 21, 3407 (1988); W. Götze and L. Sjögren, J. Phys. Condens. Matter 1, 4183 (1989).Google Scholar
3. Mezei, F., Knaak, W., and Farago, B., Phys. Rev. Lett. 58, 571 (1987); W. Knaak, F. Mezei, and B. Farago, Europhys. Lett. 7, 529 (1988); D. Richter, B. Frick, and B. Farago, Phys. Rev. Lett. 61, 2465 (1988).Google Scholar
4. Signorini, G.F., Barrat, J.-L., and Klein, M.L., J. Chem. Phys. 92, 1294 (1990); J.-N. Roux, J.-L. Barrat, and J.-P. Hansen, J. Phys. Condens. Matter 1, 7171 (1989).Google Scholar
5. Weber, T.A. and Stillinger, F.H., Phys. Rev. B 31, 1954 (1985); this model is based on earlier work by R. Harris and L.J. Lewis, Phys. Rev. B 25, 4997 (1982).CrossRefGoogle Scholar
6. Briining, R., Ryan, D.H., and Strom-Olsen, J.-O., preprint; Brilning, R., Ryan, D.H., Ström-Olsen, J.-O., and Lewis, L.J., Proceedings of the Seventh International Conference on Rapidly-Quenched Metals, Stockholm, August 1990, in press.Google Scholar
7. Johari, G.P. and Goldstein, M., J. Chem. Phys. 53, 2372 (1970); 55, 4245 (1971).Google Scholar