Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:42:01.388Z Has data issue: false hasContentIssue false

Kinetics of Ordering in Cu3Au : An Atomistic Approach

Published online by Cambridge University Press:  01 January 1992

Bulbul Chakraborty
Affiliation:
Physics Department, Brandeis University, Waltham, MA 02254
Get access

Abstract

We study the kinetics of ordering in Cu3Au using a model Hamiltonian derived from the effective medium theory of chemical bonding. Monte Carlo simulations are used to investigate universal and non-universal features of the growth kinetics. Anisotropic scaling of the structure factor is observed in late-stage growth of ordered domains. The anisotropy is a non-universal feature determined by the details of the microscopic model, and we find that the anisotropy observed in the simulations is in excellent agreement with experiments on Cu3Au. The simulations are discussed in the context of theories of unstable growth. To our knowledge, this is the first study of kinetics in a realistic model Hamiltonian describing the material-specific properties of Cu3Au.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gunton, J. D., Miguel, M. San and Sahni, Paramdeep S., in Phase Transitions and Critical Phenomena. Vol. 8, eds. Domb, C. and Lebowitz, J. L., (Academic Press, London, 1983).Google Scholar
2. Gunton, J. D. and Droz, M., Introduction to the Theory of Metastable and Unstable States, Lecture Notes in Physics, Vol. 183, (Springer-Verlag, Berlin-Heidelberg, 1983).Google Scholar
3. Mazenko, G. in Far From Equilibrium Phase Transitions, ed. Garrido, L., (Springer-Verlag, Berlin-Heidelberg, 1988).Google Scholar
4. Nagler, S. E. et al, Phys. Rev. Lett. 61, 718 (1988).Google Scholar
5. Ludwig, K. F. el al, Phys. Rev. Lett. 61,1859 (1988).Google Scholar
6. Nørskov, J. K., Jacobsen, K. W. and Puska, M. J., Phys. Rev. B35,7423 (1987).Google Scholar
7. Xi, Zhigang et al, J. Phys: Condens Matter 4,7191 (1992).Google Scholar
8. Chakraborty, Bulbul and Xi, Zhigang, Phys. Rev. Lett. 68, 2039 (1992).Google Scholar
9. Xi, Zhigang, Brandeis University thesis, unpublishedGoogle Scholar
10. Lai, Z. W., Phys. Rev. B 41,9239 (1990).Google Scholar
11. Allen, S. M. and Cahn, J. W., Acta Met 27,1085 (1979).Google Scholar
12. Sadiq, A. and Binder, K., J. Stat. Phys 35,517 (1984).Google Scholar
13. Ala-Nissila, T. and Gunton, J. D. Phys. Rev. B 38,11418 (1988).Google Scholar