Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:06:42.009Z Has data issue: false hasContentIssue false

Kinetics of Explosive Crystallization Phenomena in Amorphous Silicon and Crystal Structure of the Layers Formed

Published online by Cambridge University Press:  21 February 2011

E. Glaser
Affiliation:
Universität Jena, Institut für Festkörperphysik, O-6900 Jena, Germany
H. Bartsch
Affiliation:
Institut für Festkörperphysik und Elektronenmikroskopie, O-4020 Halle, Germany
G. Andrä
Affiliation:
Universität Jena, Institut für Festkörperphysik, O-6900 Jena, Germany
Get access

Abstract

Systematic relations are shown between the parameters controlling explosive crystallization in silicon (temperature, width of a liquid zone, and gradient of melt undercooling), the kinetics of the crystallization process, the predominance of preferential growth directions, and the crystal structure observed. Three typical regions of crystallization are found: (a) cellular growth of a laminated crystalline layer controlled by the formation of high densities of twins at a nearly plane liquid/solid interface, (b) cellular-dendritic growth of crystal lamellae characterized by branching of a curved interface, and (c) formation of a diffuse “slush zone” due to random nucleation in a-Si and grain growth in the liquid zone.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] see Ref. 4 and further references thereinGoogle Scholar
[2] Sinke, W.C., Polman, A., Stolk, P.A., in Energy Pulse and Particle Beam Modification of Materials, edited by Hohmuth, K. and Richter, E. (Akademie-Verlag, Berlin, 1990)p. 94, and references thereinGoogle Scholar
[3] Thompson, M.O., Galvin, G. J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., Chew, N.G., Phys. Rev. Lett. 52, 2360(1984)Google Scholar
[4] Geiler, H.D., Glaser, E., Götz, G., Wagner, M., J. Appl. Phys. 59, 3091(1986)Google Scholar
[5] Donovan, E.P., Spaepen, F., Poate, J.M., Jacobson, D.C., Appl. Phys. Lett. 55, 1516(1989)Google Scholar
[6] Glaser, E. (unpublished)Google Scholar
[7] Brice, J.C., Growth of Crystals from Liquids (North Holland, Amsterdam, 1973)Google Scholar
[8] Richards, P.M., Phys. Rev. B, 38, 2727(1988)Google Scholar
[9] Cullis, A.G., Chew, N.G., Webber, H.C., Smith, D.J., J. Crystal Growth 68, 624(1984)Google Scholar
[10] Gilmer, G.H., in Laser - Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W.L. and Lemons, R.A. (North Holland, New York, 1983)pp. 249261 Google Scholar
[11] Grabów, M.H., Gilmer, G.H., Bakker, A.F., Mat. Res. Soc. Symp. Proc. 141, 349(1990), edited by Tersoff, J., Vanderbilt, D. and Vitek, V. Google Scholar
[12] Geiler, H.D., Wagner, M., Glaser, E., Andra, G., Wolff, D., Götz, G., J. Mater. Res. 4, 1473(1989)Google Scholar
[13] Stiffler, S.R., Thompson, M.O., Peercy, P.S., Phys. Rev. Lett. 60, 2519(1988)Google Scholar