Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T02:30:44.709Z Has data issue: false hasContentIssue false

Kinetics of Copper Chemical Vapour Deposition from Cu(hfac)VTMS

Published online by Cambridge University Press:  10 February 2011

M. L. H. Ter Heerdt
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
P.J. Van Der Put
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
J. Schoonman
Affiliation:
Laboratory for Inorganic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
Get access

Abstract

A new model, based on irreversible reactions, is used to describe surface kinetics in copper Chemical Vapour Deposition. The mechanism proposed includes a reduction reaction with hydrogen parallel to the well-known disproportionation reaction of Cu(hfac)VTMS. This reduction reaction, not easily modelled by Langmuir-Hinshelwood-type models, appears to be important only at sufficiently high hydrogen partial pressures. The rate constants of the precursor adsorption reaction and the disproportionation reaction are low, probably caused by the dissociation included in these reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S.P., in Tungsten and Other Advanced Metals for ULSI Applications in 1990, edited by Smith, G.C. and Blumenthal, R. (Materials Research Society, Pittsburgh, PA, 1991), pp. 179187.Google Scholar
2. Gross, M.E. and Donnelly, V.M., in Advanced Metallization for ULSIApplications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Materials Research Society, Pittsburgh, PA, 1992), pp. 355366.Google Scholar
3. Griffin, G.L. and Maverick, A.W., in The Chemistry of Metal CVD, edited by Kodas, T.T. and Hampden-Smith, M.J. (VCH, Weinheim, 1994), pp. 175238.Google Scholar
4. Hampden-Smith, M.J. and Kodas, T.T., in The Chemistry of Metal CVD, edited by Kodas, T.T. and Hampden-Smith, M.J. (VCH, Weinheim, 1994), pp. 239302.Google Scholar
5. Borgharkar, N.S. and Griffin, G.L., J. Electrochem. Soc., 145 (1), 347 (1998).Google Scholar
6. Cheng, T.Q., Griffiths, K., Norton, P.R., and Puddephatt, R.J., Appl. Surf. Sci., 126 (3–4), 303 (1998).Google Scholar
7. Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., and Hochberg, A.K., J. Phys. IV, C2 (1), 271 (1991).Google Scholar
8. ter Heerdt, M.L.H., van der Put, P.J., Goossens, A., Kuijpers, A.D., and Schoonman, J., Mater., Funct. Des., Proc. Eur. Conf. Adv. Mater. Processes Appl., 5th, 3, 41 (1997).Google Scholar
9. van der Put, P.J., Ammerlaan, J.A.M., Dekker, J.P., and Schoonman, J., to be published.Google Scholar
10. Gates, B.C., Catalytic Chemistry (John Wiley & Sons, Inc., New York, 1992).Google Scholar
11. Ammerlaan, J.A.M., van der Put, P.J., and Schoonman, J., J. Appl. Phys., 73 (9), 4631 (1993).Google Scholar
12. Izquierdo, R., Bertomeu, J., Suys, M., Sacher, E., and Meunier, M., Appl. Surf Sci., 86, 509 (1995).Google Scholar
13. Jain, A., Chi, K.M., Kodas, T.T., and Hampden-Smith, M.J., J. Electrochem. Soc., 140 (5), 1434 (1993).Google Scholar
14. Yoen, H.Y., Park, Y.B., and Rhee, S.W., J. Mater. Sci.: Mater. Electron., 8, 189 (1997).Google Scholar
15. ter Heerdt, M.L.H., Overdijk, J.J., van der Put, P.J., and Schoonman, J., to be published.Google Scholar
16. Awaya, N. and Arita, Y., Thin Solid Films, 262, 12 (1995).Google Scholar
17. Awaya, N., Ohno, K., and Arita, Y., J. Electrochem. Soc., 142 (9), 3173 (1995).Google Scholar
18. Girolami, G.S., Jeffries, P.M., and Dubois, L.H., J. Am. Chem. Soc., 115, 1015 (1993).Google Scholar