Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:16:00.190Z Has data issue: false hasContentIssue false

Kinetics of alkali ion exchange of irradiated glasses

Published online by Cambridge University Press:  01 February 2011

Michael I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, S1 3JD, UK. E-mail: M. [email protected]
William E. Lee
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Mappin Street, S1 3JD, UK. E-mail: M. [email protected]
Get access

Abstract

The kinetics of alkali ion exchange of irradiated glasses were investigated using the structural energy barrier model for ion exchange of glasses. Derived rates of alkali ion exchange depend both on irradiation dose D(Gy) and dose rate q(Gy/s) illustrating that some effects cannot be simulated by external irradiation and require in-situ measurements. Higher D and q lead to increased ion exchange rates. Significant changes occur in the activation energies demonstrating a 4 – 6 times decrease depending on glass composition. Radiation-induced changes are higher at relatively low temperatures and are diminished by increased glass temperature. Numerical estimations show that changes in alkali ion exchange kinetics occur at D far below damaging doses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Van Iseghem, P. ed. Glass in its disposal environment. Proc. Int. Topical Workshop on Glass in its Disposal Environment. J. Nucl. Mat., 298 (1, 2) (2001).Google Scholar
2. Chen, Y., McGrail, B.P., Engel, D.W.. Mat. Res. Soc. Symp. Proc., 465, 10511057 (1997).Google Scholar
3. Sheng, J.W., Luo, S.G., Tang, B.L.. Nuclear Technology, 123 (3) 296 (1998).Google Scholar
4. McGrail, B.P., Isenhover, J.P., Shuh, D.K., Liu, P., Darab, J.G., Baer, D.R., Thevuthasen, S., Shutthanandan, V., Engelhard, M.H., Booth, C.H. and Nachimuthu, P.. J. Non-Cryst. Solids, 296, 1026 (2001).Google Scholar
5. Ojovan, M.I., Burcl, R.. Proc. 2003 EPRI Int. Conf. in Conj. with IAEA, July 16–18, 2003, New Orleans, LA, USA, CD ROM, EPRI-S08-P7.pdf (2003).Google Scholar
6. Doremus, R.H.. J. Non-Cryst. Solids, 19, 137144 (1975).Google Scholar
7. Ernsberger, F.M.. J. Amer. Chem. Soc., 66 (11), 747750 (1983).Google Scholar
8. Skuja, L.. J. Non-Cryst. Solids, 239 (1–3) 1648 (1998)Google Scholar
9. Weber, W.J., Ewing, R.C., Angel, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C.. J. Mater. Res., 12 (8) 19461978 (1997).Google Scholar
10. Moritani, K., Tagagi, I., Moryama, H.. J. Nucl. Mat., 312, 97102 (2003).Google Scholar
11. Cormack, A.N., Du, J., Zeitler, T.R.. J. Non-Cryst. Solids, 323, 147154 (2003).Google Scholar
12. Delaye, J.M., Ghaleb, D.. Phys. Rev. B. 61 (21) 1448114493 (2000).Google Scholar
13. Boisot, B., Petite, G., Ghaleb, D., Pellerin, N., Fayon, F., Reynard, B., Calas, G.. Nucl. Instr. and Meth. in Phys. Res. B 166–167, 500504 (2000).Google Scholar
14. Mashkov, V.A., Austin, W.R., Zhang, L., Leisure, R.G.. Phys. Rev. Lett., 76 (16), 29262929 (1996).Google Scholar
15. Advocat, T., Jollivet, P., Crovisier, J.L., M.del Nero. J. Nucl. Mat., 298 (1, 2) 5562 (2001).Google Scholar