Published online by Cambridge University Press: 10 February 2011
Growth rates for homoepitaxy of diamond (100) and (111) by hot-filament chemical vapor deposition were measured via in situ Fizeau interferometry and the surface morphologies were subsequently characterized by atomic force microscopy (AFM). (100)-oriented growth from 0.5% CH4 in H2 exhibited pure Arrhenius behavior, with an activation energy of 17±1 kcal/mol, up to a substrate temperature of 1100°C. Addition of oxygen to the feed gas resulted in an increased growth rate below 900°C, a maximum growth rate between 900 and 1000°C, and etching (of diamond) above 1050 - 1100°C. However, the presence of oxygen apparently had less effect on the surface morphology than did the (100)-to-(111) growth rate parameter α, determined directly from the relative growth rates of (100) and (111) substrates mounted side by side. During homoepitaxial growth from 0.5% CH4 in H2 at 875°C of ca. 1-micron-thick films,α = was 2.2 without oxygen and 1.3 for growth with 0.14% O2. The (100) film grown with α = 2.2 was quite smooth, while that with α = 1.3 was covered by numerous hillocks and penetration twins. AFM analysis revealed surprisingly little difference between the (111) films despite the considerable difference in α. Implications of these results for the growth mechanism are discussed.