Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:19:09.830Z Has data issue: false hasContentIssue false

Kinetics And Morphology Of Homoepitaxial Cvd Growth On Diamond (100) And (111)

Published online by Cambridge University Press:  10 February 2011

R. E. Rawles
Affiliation:
Rice University, Department of Chemistry, Houston, TX, 77251-1892
W. G. Morris
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301
M. P. D’Evelyn
Affiliation:
General Electric Corporate Research and Development, P.O. Box 8, Schenectady, NY 12301 Rensselaer Polytechnic Institute, Department of Materials Science & Engineering, Troy, NY 12180-3590
Get access

Abstract

Growth rates for homoepitaxy of diamond (100) and (111) by hot-filament chemical vapor deposition were measured via in situ Fizeau interferometry and the surface morphologies were subsequently characterized by atomic force microscopy (AFM). (100)-oriented growth from 0.5% CH4 in H2 exhibited pure Arrhenius behavior, with an activation energy of 17±1 kcal/mol, up to a substrate temperature of 1100°C. Addition of oxygen to the feed gas resulted in an increased growth rate below 900°C, a maximum growth rate between 900 and 1000°C, and etching (of diamond) above 1050 - 1100°C. However, the presence of oxygen apparently had less effect on the surface morphology than did the (100)-to-(111) growth rate parameter α, determined directly from the relative growth rates of (100) and (111) substrates mounted side by side. During homoepitaxial growth from 0.5% CH4 in H2 at 875°C of ca. 1-micron-thick films,α = was 2.2 without oxygen and 1.3 for growth with 0.14% O2. The (100) film grown with α = 2.2 was quite smooth, while that with α = 1.3 was covered by numerous hillocks and penetration twins. AFM analysis revealed surprisingly little difference between the (111) films despite the considerable difference in α. Implications of these results for the growth mechanism are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, 519 (1986); C.-P.Chang, D. L.Flamm, D. E.Ibbotson, and J. A.Mucha, J. Appl. Phys. 63, 1744 (1988); Y. Saito, K.Sato, H.Tanaka, K.Fujita, and S.Matsuda, J. Mater. Sci. 23, 842 (1988); Y.Liou, A.Inspektor, R.Weimer, D.Knight, and R.Messier, J. Mater. Res. 5, 2305 (1990); J.Wei, H.Kawarada, J.Suzuki, and A.Hiraki, J. Cryst. Growth 99, 1201 (1990);P. K.Bachmann, D.Leers, and H.Lydtin, Diamond Rel. Mat. 1, 1 (1991);R. A.Rudder, G. C.Hudson, J. B.Posthill, R. E.Thomas, R. C.Hendry, D. P.Malta, R. J.Markunas, T. P.Humphreys, and R. J.Nemanich, Appl. Phys. Lett. 60, 329 (1992).Google Scholar
2. Wild, C., Herres, N., and Koidl, P., J. Appl. Phys. 68, 973 (1990); C.Wild, P.Koidl, W.Muller-Sebert, H.Walchen, R.Kohl, N.Herres, R.Locher, R.Samelenski, and R.Brenn, Diamond Relat. Mater. 2, 158 (1993); M. A.Tamor and M. P.Everson, J. Mater. Res. 9, 1839 (1994).Google Scholar
3. Rawles, R. E. and D‘Evelyn, M. P., Mater. Res. Soc. Symp. Proc. 339, 279 (1994).Google Scholar
4. Rawles, R. E., Kittrell, C., and D’Evelyn, M. P., in Diamond Materials, edited by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society, Pennington, New Jersey, 1993), pp. 269275.Google Scholar
5. Rawles, R. E. and D‘Evelyn, M. P., Applications of Diamond Films and Related Materials: Third International Conference, edited by Feldman, A. et al, (NIST Special Publication 885, Washington D.C., 1995), pp. 565–568.Google Scholar
6. Clausing, R. E., Heatherly, L., Specht, E. D., and More, K. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 19991) p.575; L. F.Sutcu, C. J.Chu, M. S.Thompson, R. H.Hauge, J. L.Margrave, and M. P. D'Evelyn, J. Appl. Phys. 71, 5930 (1992); T.Tsuno, T.Imai, and N.Fujimori, Jpn. J. Appl. Phys. 33, 4039 (1994); M. P.Everson, M. A.Tamor, D.Scholl, B. R.Stoner, S. R.Sahaida, and J. P.Bade, J. Appl. Phys. 75, 169 (1994).Google Scholar
7. Chu, C. J., Hauge, R. H., Margrave, J. L., and D’Evelyn, M. P., Appl. Phys. Lett. 61, 1393 (1992).Google Scholar
8. Kweon, D. –W., Lee, J. –Y., and Kim, D., J. AppI. Phys. 69, 8329 (1991); E.Kondoh, T.Ohta, T.Mitomo, and K.Ohtsuka, J. Appl. Phys. 72, 705 (1992) and 73, 3041 (1993); J. W.Kim, Y. -J.Baik, K. Y.Eun, and D. N.Yun, Thin Solid Films 212, 104 (1992).Google Scholar
9. Sommer, M. and Smith, F. W., J. Vac. Sci. Technol. A 9, 1134 (1991).Google Scholar
10. Menningen, K. L., Erickson, C. J., Childs, M. A., Anderson, L. W., and Lawler, J. E., J. Mater. Res. 10, 1108 (1995).Google Scholar
11. Hiribayashi, K., J. Appl. Phys. 72, 4083 (1992); H.Sasaki and H.Kawarada, Jpn. J. Appl. Phys. 32, L1771 (1993).Google Scholar