No CrossRef data available.
Article contents
Kinetics and Microstructure of Transiently Annealed Implanted Polycrystalline Silicon Layers
Published online by Cambridge University Press: 25 February 2011
Abstract
Microstructural changes occurring during the early stages of rapid thermal annealing of polycrystalline silicon bipolar emitters crucially affect the final dopant distribution and hence the performance of these devices. The first stage of annealing is epitaxial regrowth in the solid phase of the layer amorphised by the implantation. In-situ studies using time-resolved reflectivity measurements, combined with cross-sectional transmission electron microscopy of partly annealed structures, have determined the effects of initial grain size, annealing temperature and amorphising species (Si or As) on the rate of regrowth and the microstructural changes which occur during annealing. As the grain size is reduced, the regrowth rate decreases and the interface roughness increases. Arsenic implantation alters the rate of regrowth in such a manner as to produce a smoother interface than that in silicon implanted material.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990