Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:31:28.124Z Has data issue: false hasContentIssue false

The Kinetics and Microstructure of Ion Beam Induced Crystallisation of Silicon

Published online by Cambridge University Press:  25 February 2011

J.S. Williams
Affiliation:
Microelectronics Technology Centre, RMIT, Melbourne 3000, Australia
W.L. Brown
Affiliation:
A.T. & T. Bell Laboratories, Murray Hill, N.J. 07174, USA
R. G. Elliman
Affiliation:
CSIRO Division of Chemical Physics, Clayton 3168, Australia
R. V. Knoell
Affiliation:
A.T. & T. Bell Laboratories, Murray Hill, N.J. 07174, USA
D.M. Maher
Affiliation:
A.T. & T. Bell Laboratories, Murray Hill, N.J. 07174, USA
T.E. Seidel
Affiliation:
J.C. Shumacher Co., Oceanside, Ca, 92054, U.S.A.
Get access

Abstract

This paper reviews recent detailed investigations into the crystal growth kinetics and the microstructure of ion-beam-stimulated epitaxial crystallisation of silicon. Beam-induced crystallisation at temperatures between 200-400°C is found to be characterised by an activation energy of 0.24eV. Furthermore, in this temperature regime, crystal growth on (100) silicon is found to be free of extended defects except for a sharp hand of dislocation loops centred about the range of the ions employed to stimulate crystallisation. A higher temperature regime (>400°C) is observed in which the growth kinetics are less well defined but appear to be associated with an apparent activation energy of >0.5eV. In this regime, extended defects are observed to extend from the ion range to the surface. Results are presented which strongly suggest that nuclear energy deposition precisely at the amorphous-crystalline interface is responsible for crystallisation under ion irradiation. It is argued that the major fraction (2.4eV) of the thermal-only activation energy for epitaxial crystallisation of silicon is likely to be associated with the formation of nucleation sites for growth, a step which is achieved athermally under ion irradiation. In addition, the growth rate per unit ion fluence is found to be independent of substrate orientation at temperatures <450°C and independent of doping concentration for temperatures <400°C. These results are consistent with our proposed model for beam-induced crystallisation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D, Mat. Res. Soc. Symp. Proc. 13, 141 (1983).Google Scholar
2. Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W. J. Appl. Phys. 49, 3906 (1978).Google Scholar
3. Spaepen, F. and Turnbull, D., in “Laser Annealing of Semiconductors”, eds Poate, J.M. and Mayer, J.W. (Academic Press, New York, 1981) p. 15.Google Scholar
4. Narayan, J., J. Appl. Phys. 53, 8607 (1982).CrossRefGoogle Scholar
5. Suni, I., Goltz, G., Nicolet, M.A. and Lau, S.S., Thin Solid Films, 93, 171 (1982).CrossRefGoogle Scholar
6. Williams, J.S. and Elliman, R.G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar
7. Mazey, D.J. and Nelson, R.S., Rad. Eff. 1, 229 (1969).Google Scholar
8. Dearnaley, G., Freeman, J.H., Nelson, R.S. and Stephen, J., Ion Implantation in Semiconductors, North-Holland, New York (1973).Google Scholar
9. Morehead, F.F. and Crowder, B.L., In “Ion Implantation”, Eds. Eisen, F.H. and Chadderton, L.T., (Gordon and Breach, London, 1971) p. 25.Google Scholar
10. Freeman, J.H., Chivers, D.J., Gard, G.A., Hinder, G.W., Smith, B.J. and Stephen, J., In “Ion Implantation in Semiconductors”, Ed. Namba, S., (Plenum Press, New York, 1975) p. 555.Google Scholar
11. Csepregi, L., Kennedy, E.F., Lau, S.S., Mayer, J.W. and Sigmon, T.W., Appl. Phys. Lett. 29, 645 (1976).Google Scholar
12. Poate, J.M. and Williams, J.S., Ch.2. In “Ion Implantation and Beam Processing”, Eds. Williams, J.S. and Poate, J.M., (Academic Press, Sydney, 1984) p.11.Google Scholar
13. Holland, O.W., Narayan, J. and Fathy, D., Nucl. Instr. Meth. B7/8, 243 (1985).CrossRefGoogle Scholar
14. Holmen, G., Buren, A. and Hogberg, P., Rad. Effects. 24, 51 (1975).Google Scholar
15. Golecki, I., Chapman, G.E., Lau, S.S., Tsaur, B.Y. and Mayer, J.W., Phys. Lett. 71A, 267 (1979).Google Scholar
16. Nakata, J. and Kajiyama, K., Appl. Phys. Lett. 40, 686 (1982).Google Scholar
17. Svensson, B., Linnros, J. and Holmen, G., Nucl. Instr. Meth. 209/210, 755 89 (1983).Google Scholar
18. Elliman, R.G., Johnson, S.T., Short, K.T. and Williams, J.S., Mat. Res. Soc. Symp. Proc. 27, 229 (1984).CrossRefGoogle Scholar
19. Williams, J.S., Brown, W.L., Elliman, R.G. and Seidel, T.E., Mat. Res. Soc. Symp. Proc. 35, (1985).Google Scholar
20. Elliman, R.G., Johnson, S.T., Pogany, A.P. and Williams, J.S., Nucl. Instr. Meth. B7/8, 310 (1985).Google Scholar
21. Williams, J.S., Brown, W.L., Elliman, R.G. and Seidel, T.E., Phys. Rev. Lett. (submitted).Google Scholar
22. Linnros, J., Svensson, B. and Holmen, G., Phys. Rev. B30, 3629 (1984).Google Scholar
23. Holmen, G., Linnros, J. and Svensson, B., Appl. Phys. Lett. 45, 1116 (1984).Google Scholar
24. Linnros, J., Holmen, G. and Svensson, B., to be published.Google Scholar
25. Seidel, T.E., Lischner, D.J., Pai, C.S., Knoell, R.V., Maher, D.M. and Jacobson, D.C., Nucl. Instr. Meth B7/8, 251 (1985).Google Scholar
26. Sadana, D.K., Nucl. Instr. Meth. B7/8, 375 (1985).Google Scholar
27. Frank, W., Seeger, A. and Gosele, U., Mat. Res. Soc. Symp. Proc. 2, 31 (1981).Google Scholar
28. Elliman, R.G., Johnson, S.T., Pogany, A.P. and Williams, J.S., to be published.Google Scholar