Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:15:15.248Z Has data issue: false hasContentIssue false

Kinetics and Mechanism of Nucleation, Growth and Stabilization of Metal Oxide Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Rina Tannenbaum*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology Atlanta, GA
Scott King
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology Atlanta, GA
K. Hyunh
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN
Melissa Zubris
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology Atlanta, GA
Nily Dan
Affiliation:
Department of Chemical Engineering, Drexel University, Philadelphia, PA.
Get access

Abstract

Reactive metallic fragments that are formed by the decomposition of organometallic complexes, undergo a nucleation and growth process that gives rise to the formation of nanocrystals. In the absence of stabilizing molecules, the aggregation process is restricted mainly due to the decreasing mobility of the particles and their declining diffusional rates as a function of their increasing size. On the other hand, in the presence of a polymer in the reaction medium, the growing metallic particles are stabilized by the surface adsorption of the polymer chains, thus lowering their surface energy and creating a barrier to further aggregation. Studies of the nucleation and aggregation kinetics of metallic particles formed from the decomposition of organometallic precursors have been used to shed light on the mechanism of their formation. In these studies, the rate of decomposition of the precursor organometallic complexes used has been considered to represent the overall rate of the process. Moreover, it has been implicitly assumed that the formation kinetics of the metal nanoclusters directly coincides with the decomposition kinetics of their precursors. In this study, we attempt to decouple the kinetic characteristics of the various steps that comprise the overall nucleation and aggregation process cobalt oxide nanoclusters. A combination of infrared and x-ray photoelectron spectroscopies, and particle size determination by dynamic light scattering, are used to identify the individual contribution of each step to the overall mechanism of metal nanocluster formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Martin, T. P., Solid State Ionics 131(1), 312 (2000)Google Scholar
2. Klaubunde, K. J., Tanaka, Y., J. Molec. Catal. 21, 57 (1983).Google Scholar
3. Kanai, H., Tan, B. J., Klaubunde, K. J., Langmuir 2(6), 760 (1986).Google Scholar
4. Bockstaller, M., Kolb, R., Thomas, E. L., Adv. Mat. 13(23), 17831786 (2001).Google Scholar
5. Zhao, S., Wang, S., Ye, H., J. Phys. Soc. Jpn. 70(10), 29532957 (2001).Google Scholar
6. Tannenbaum, R., Reich, S., Flenniken, C. L., Goldberg, E. P., Adv. Mat. 14(19), 14021405 (2002).Google Scholar
7. Tannenbaum, R., Flenniken, C. L., Goldberg, E. P., J. Polym. Sci. Polym. Phys. Ed. 25, 1341 (1987).Google Scholar
8. Tannenbaum, R., Flenniken, C. L., Goldberg, E. P., J. Polym. Sci. Polym. Phys. Ed. 28, 2421 (1990).Google Scholar
9. Tannenbaum, R., Langmuir 13(19), 5056 (1997) and pertinent references therein.Google Scholar
10. Widegren, J. A., III Aiken, J. D., Oezkar, S., Finke, R. G., Chem. Mater. 13(2), 312324 (2001).Google Scholar
11. Rotstein, H. G., Tannenbaum, R., J. Phys. Chem. B 106(1), 146151 (2002).Google Scholar
12. Tadd, E., Bradley, J., Tannenbaum, R., Langmuir 18(6), 23782384 (2002).Google Scholar
13. Spatz, J. P., Mössmer, S., Hartmann, C., Möller, M., Herzog, T., Krieger, M., Boyen, H.-G., Ziemann, P., Kabius, B., Langmuir 16, 407415 (2000).Google Scholar
14. Tsivline, D., Stepanyuk, V. S., Levanov, N., Hergert, W., Katsnelson, A. A., Comput. Phys. Commun. 121, 747 (1999).Google Scholar
15. Dan, N., Langmuir 16(8), 4045 (2000).Google Scholar
16. Tadd, E., Zeno, A., Zubris, M., Dan, N., Tannenbaum, R., Macromolecules 36(17), 64976502 (2003).Google Scholar
17. King, S., Hyunh, K., Tannenbaum, R., J. Phys. Chem. B 107(44), 1209712104 (2003).Google Scholar
18. Ungváry, F., Markó, L., J. Organometal. Chem. 71, 283 (1974).Google Scholar
19. Bor, G., Dietler, U. K., J. Organometal. Chem. 191, 295 (1980).Google Scholar
20. Bor, G., Dietler, U. K., Noack, K., J. Chem. Soc. Chem. Comm. 914 (1976).Google Scholar
21. Noack, K., Helv. Chim. Acta 45, 1847 (1962), and all pertinent references therein.Google Scholar
22. Braterman, P. S., “Metal Carbonyl Spectra”, Academic Press, New York (1975).Google Scholar
23. Uzunova, E. L., St. Nikolov, G., Mikosch, H., J. Phys. Chem. A 106(16), 41044114 (2002).Google Scholar
24. Ungváry, F., Markó, L., J. Organometal. Chem. 20, 205 (1969).Google Scholar
25. Werner, P., Ault, B. S., Orchin, M., J. Organometal. Chem. 162, 189194 (1978).Google Scholar
26. Konstadinidis, K., Thakkar, B., Chakraborty, A., Potts, L. W., Tannenbaum, R., Tirrell, M., Evans, J. F., Langmuir 8(5), 13071317 (1992).Google Scholar
27. Allara, D. L., Polym. Sci. Technol. 12B, 751 (1980).Google Scholar
28. Mallik, R. R., Pritchard, R. G., Horley, C. C., Polymer 26, 551 (1985).Google Scholar
29. Tannenbaum, R., Hakanson, C., Zeno, A., Tirrell, M., Langmuir 18(14), 55925599 (2002).Google Scholar
30. Bartha, J. W., Hahn, P. O., LeGoues, F. K., Ho, P. S., J. Vac. Sci. Technol. A3, 1390 (1985).Google Scholar
31. Jordan, J. L., Sanda, P. N., Morar, J. F., Kovac, C. A., Himpsel, F. J., Pollak, R. A., J. Vac. Sci. Technol. A4, 1046 (1986).Google Scholar
32. Nuzzo, R. G., Wong, Y.-H., Schwartz, G. P., Langmuir 3(6), 11361140 (1987).Google Scholar
33. Atanasoska, Lj., Anderson, S. G., III Meyer, H. M., Weaver, J. H., Vacuum 40(1–2), 9194 (1990).Google Scholar