Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:55:30.658Z Has data issue: false hasContentIssue false

Kinetic Study of Iron Dissolution from Low Grade Kaolin Using Oxalic Acid Solutions

Published online by Cambridge University Press:  24 February 2012

A. Martínez-Luévanos
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza y González. Lobo s/n, Col. República, C. P. 25280; Saltillo, Coah., México.
L. E. Serrato-Villegas
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza y González. Lobo s/n, Col. República, C. P. 25280; Saltillo, Coah., México.
M. G. Rodríguez-Delgado
Affiliation:
Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. V. Carranza y González. Lobo s/n, Col. República, C. P. 25280; Saltillo, Coah., México.
F. R. Carrillo-Pedroza
Affiliation:
Facultad de Metalurgia, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah., México.
Get access

Abstract

Kaolin is an important material that is used in industrial applications, including ceramics, paper, paints, fiberglass, inks, pharmaceuticals, and cement. The presence of impurities, particularly iron and titanium bearing materials, imparts color to kaolin. During weathering or hydrothermal alteration, significant levels of iron oxides can be deposited that leave a concentrated kaolinitic clay unusable for industrial application. Therefore, several chemical methods have been applied to kaolin beneficiation in order to reduce these contaminants. Ferric oxide dissolution is of particular interest for producers of industrial minerals such as kaolin. The objective of this work was to examine the kinetics of iron dissolution form low grade kaolin using oxalic acid solutions. The effects of acid concentration and reaction temperature were studied. It was determined that the iron dissolution rate increases with oxalic acid concentration, temperature. Leaching data showed that iron dissolution from low grade kaolin is due to diffusion through the product layer. The activation energy of the process was 46.32 kJ/mol.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murray, H.H., Keller, W.D., in Kaolin Genesis and Utilization. edited by Murray, H.H., Bundy, W., Harvey, C., Boulder, CO. (The Clay Minerals Society, 1993) pp. 124.Google Scholar
2.Veglio, F., Passariello, B., Toro, L., Marabini, A. M. Ind. Eng. Chem. Res., 35, 16801687 (1996).Google Scholar
3.Ambikadevi, V.R., Lalithambika, M.Appl. Clay Sci. 16, 133145 (2000).Google Scholar
4.Lee, S., Tran, T., Park, Y., Kim, S., Kim, M.Int. J. Miner. Process., 80, 144152 (2006).Google Scholar
5.Lee, S., Tran, T., Jung, B., Kim, S., Kim, M.Hydrometallurgy, 87, 9199 (2007).Google Scholar
6.Blesa, M., Marinovich, A., Baumgartner, E., Maroto, A., Inorg. Chem., 26, 37133717 (1987).Google Scholar
7.Veglio, F., Toro, L.Int. J. Miner. Process., 39, 8799 (1993).Google Scholar
8.Veglio, F., Toro, L. Int. J. Miner. Process., 41, 239255 (1994).Google Scholar
9.Panias, D., Taxiarchou, M., Douni, I., Paspaliaris, I., Kontopoulos, A.Canadian Metallurgical Quarterly. 35, 363373 (1996).Google Scholar
10.de Mesquita, L.M. S., Rodrigues, T., Gomes, S.S.Miner. Eng., 9, 965971 (1996).Google Scholar
11.Mandal, S., Banerjee, P.Int. J. Miner. Process., 74, 263270 (2004).Google Scholar
12.Hosseini, M., Pazouki, M., Ranjbar, M., Habibian, M.Appl. Clay Sci., 37, 251257 (2006).Google Scholar
13.Groudev, S.N.Miner Metall. Process., 16, 1928 (1999).Google Scholar
14.Suter, D., Banwart, S., Stumm, W. Langmuir, 7, 809813 (1991).Google Scholar
15.Levenspiel, O.Chemical Reaction Engineering, 2nd ed. (John Wiley, New York, 1972) p.350.Google Scholar
16.Shon, H. Y., Wadsworth, M. E.Rate Processes of Extractive Metallurgy (Plenum Press, New York, 1986) p. 472.Google Scholar
17.Habashi, F.Principles of Extractive Metallurgy (Science Publishers Ltd., London, 1980) pp. 111146.Google Scholar