Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:19:28.105Z Has data issue: false hasContentIssue false

Kinetic Studies of Nanoscale Crystallization in Electronic Materials

Published online by Cambridge University Press:  15 February 2011

C. Hayzelden
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138 Now at UltraTest International, Inc., MicroLabs Analysis Division, San Jose, CA 95131
J. L. Batstone
Affiliation:
IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598
Get access

Abstract

We report a kinetic analysis of low-temperature NiSi2-mediated crystallization of amorphous Si by in situ transmission electron microscopy. The initiation of crystallization by formation of crystalline Si on buried NiSi2 precipitates is shown to have an activation energy of 2.8±0.7eV. Crystallization of the amorphous Si via migrating precipitates of NiSi2 occurs with an activation energy of 2.0±0.2eV. The significance of these activation energies is discussed in terms of possible atomistic mechanisms of crystalline Si initiation and subsequent growth. Amorphous Si is reported to crystallize at temperatures as low as 450°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S.P., Silicides for VLSI Applications (Academic Press, Orlando, Florida) 1983.Google Scholar
2. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
3. Cammarata, R.C., Thompson, C.V., Hayzelden, C. and Tu, K.N., J. Mater. Res. 5, 2133 (1990).Google Scholar
4. Hayzelden, C. and Batstone, J.L., in Proc. 49th Meeting of the Microscopy Society of America, eds. Bailey, G W. and Hall, E.L. (San Francisco Press, CA, 1991) pp. 826827.Google Scholar
5. Hayzelden, C., Batstone, J.L. and R Cammarata, C., Appl. Phys. Lett. 60, 225 (1992).Google Scholar
6. Hayzelden, C. and Batstone, J.L., in Proc. 50th Meeting of the Microscopy Society of America eds. Bailey, G.W., Bentley, J. and Small, J.A. (San Francisco Press, CA. 1992) pp. 13521353.Google Scholar
7. Hayzelden, C. and Batstone, J.L., J. Appl. Phys. 73, 8279 (1993).Google Scholar
8. Batstone, J.L. and Hayzelden, C., in Proc. 8th Oxford Conf. Microsc. Semicond. Mater. eds. Cullis, A G. and Staton-Bevan, A., (Inst. Phys. Conf. Ser. 134: Sect. 4, London, 1993) pp. 165172.Google Scholar
9. Batstone, J.L. and Hayzelden, C., in Polycrystalline Semiconductors III - Physics and Technology, Solid State Phenomena Vols 37–38, eds. Strunk, H.P., Werner, J.H., Fortin, B. and Bonnaud, O., (Scitec Publications, Switzerland, 1994) pp 257268.Google Scholar
10. Hayzelden, C. and Batstone, J.L. in Crystallization in Amorphous Materials, eds. Libera, M., Haynes, T.E., Cebe, P. and Dickinson, J.E. Jr. (Mater. Res. Soc. Proc. 321, Pittsburgh, PA, 1994) pp 579584.Google Scholar
11. Mohadjeri, B., Linnros, J., Svensson, B.G. and Ostling, M., Phys. Rev. Lett. 68, 1872 (1992).Google Scholar
12. Erokhin, Y.N., Grotzschel, R., Oktyabrsky, S.R., Roorda, S., Sinke, W. and Vyatkin, A.F., Mats. Sci. and Eng. B12, 103 (1992).Google Scholar
13. Hempel, T., Schoenfeld, O. and Veit, P. in Beam-Solid Interactions: Fundamentals and Applications, eds. by Nastasi, M., Harriott, L.R., Herbots, N. and Averback, Re S. (Mater. Res. Soc. Proc. 279, Pittsburgh, PA, 1993) pp. 267272.Google Scholar
14. Kuznetsov, A. Yu., Khodos, I.I., Mordkovich, V.N., Vyatkin, A.F. and Chichenin, N.G., Nucl. Instr. Meth. B 80/81, 990 (1993).Google Scholar
15. Kuznetsov, A.Yu., Khodos, I.I., Mordkovich, V.N. and Vyatkin, A.F., Appl. Surf. Sci. 73, 203 (1993).Google Scholar
16. Kuznetsov, A.Yu., Mordkovich, V.N., Vyatkin, A.F. and Khodos, I.I., in Proc. 8th Oxford Conf. Microsc. Semicond. Mater., eds. Cullis, A.G. and Staton-Bevan, A., (Inst. Phys. Conf. Ser. 134: Section 4, London, 1993) pp. 191194.Google Scholar
17. Erokhin, Y.N., Hong, F., Pramanick, S., Rozgonyi, G.A., Patnaik, B.K. and White, C.W., Appl. Phys. Lett. 63, 3173 (1993).Google Scholar
18. Ashtikar, M.S. and Sharma, G.L., J. Appl. Phys. 78, 913 (1995).Google Scholar
19. Lee, S-W., Jeon, Y-C. and Joo, S-K., Appl. Phys. Lett. 66, 1671 (1995).Google Scholar
20. Hayzelden, C. and Batstone, J.L., to be published.Google Scholar
21. Mayer, J.W., Eriksson, L., Picraux, S.T. and Davies, J.A., Can. J. Phys. 45, 663 (1968).Google Scholar
22. Olson, G. L. and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
23. Csepregi, L., Kennedy, E.F., Gallaher, T. and Mayer, J.W., J. Appl. Phys. 48 4234 (1977).Google Scholar
24. Donovan, E.P., Spaepen, F., Poate, J.M and Jacobson, D.C., Appl. Phys. Lett. 55, 1516 (1989).Google Scholar
25. Beadle, W. E., Tsai, J.C.C. and Plummer, R.D., eds., Quick Reference Manual for Silicon Integrated Circuit Technology, (Wiley, New York) 1985.Google Scholar
26. Fair, R.B., Impurity Doping, ed. Wang, F.F.Y. (North Holland, Amsterdam) Ch. 7 (1981).Google Scholar
27. Tsai, J.C.C., VLSI Technology, ed. Sze, S.M. (McGraw-Hill, New York) Ch. 1 (1981).Google Scholar
28. Chu, K.K., Lau, S.S., Mayer, J.W. and Muller, H., Thin Solid Films, 25, 393 (1975).Google Scholar
29. Tu, K.N., J. Appl. Phys. 48, 3379 (1977).Google Scholar
30. Olowolafe, J.O., Nicolet, M-A, Pal, C.S. and Mayer, J.W., Thin Solid Films, 38, 143 (1976).Google Scholar
31. Finstead, T.G., Mayer, J.W. and Nicolet, M-A., Thin Solid Films, 51, 391 (1978).Google Scholar
32. Scott, D.M. and Nicolet, M-A, Phys. Status. Solidi. A66, 773 (1981).Google Scholar
33. Tu, K.N., Alessandrini, E., Chu, W.K., Krautle, H. and Mayer, J.W., Jpn. J. Appl. Phys.13, suppl. 2 part 1, 669 (1974).Google Scholar
34. d‘Heurle, F., Petersson, S., Stolt, L. and Strizker, B., J. Appl. Phys. 53, 5678 (1982).Google Scholar
35. Lien, C.-D., Nicolet, M-A and Lau, S.S., Phys. Status. Solidi. A81, 123 (1984).Google Scholar
36. d'Heurle, F.M. and Gas, P., J. Mater Res. 1, 205 (1986).Google Scholar
37. Pollock, D.D., Physics of Engineering Materials, (Prentice Hall, Englewood Cliffs, New Jersey), 102 (1990).Google Scholar