Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:09:01.262Z Has data issue: false hasContentIssue false

Kinetic Roughening of Fe/Fe(100) Epitaxial Thin Films

Published online by Cambridge University Press:  21 February 2011

M.C. Bartelt
Affiliation:
IPRT, and Ames Laboratory, Iowa State University, Ames, Iowa 50011
J.W. Evans
Affiliation:
Department of Mathematics, and Ames Laboratory, Iowa State University, Ames, Iowa 50011
Get access

Abstract

We model kinetic roughening during Fe(100) homoepitaxy, where the formation of mounds with selected slope has been observed. Our model incorporates irreversible nucleation and growth of two-dimensional square islands in each layer, and a step-edge barrier to diffusive downward transport (which exceeds the barrier, Ed, to terrace diffusion by ESch). We estimate that ESch≈45meV compared with Ed≈450meV. To reproduce observed behavior, it is also essential for the model to incorporate "downward funneling" of depositing atoms to four-fold hollow adsorption sites, as this controls slope selection. Finally, we discuss model predictions for the non-monotonic temperature dependence of kinetic roughening.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Venables, J.A., Philos. Mag. 27, 697 (1973).Google Scholar
2 Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
3 Krug, J., Plischke, M., and Siegert, M., Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
4 Johnston, M.D. et al. ,, Phys. Rev. Lett. 72, 116 (1994).Google Scholar
5 Ernst, H.J. et al. ,, Phys. Rev. Lett. 72, 112 (1994).Google Scholar
6 Stroscio, J.A., Pierce, D.T., Stiles, M., Zangwill, A., and Sander, L.M., Phys. Rev. Lett. 75, 4246 (1995); J.A. Stroscio, D.T. Pierce, and R.A. Dragoset, Phys. Rev. Lett. 70, 3615 (1993).Google Scholar
7 Meinel, K., Klaua, M., and Bethge, H., J. Crystal Growth 89, 447 (1988); R. Kunkel et al., Phys. Rev. Lett. 65, 733 (1990); J. Vrijmoeth et al., Phys. Rev. Lett. 72, 3843 (1994).Google Scholar
8 Ehrlich, G., CRC Crit. Rev. Solid State Sci. 4, 205 (1974).Google Scholar
9 Šmilauer, P. and Vvedensky, D., Phys. Rev. B 48, 17603 (1993).Google Scholar
10 Bromann, K. et al. , Phys. Rev. Lett. 75, 677 (1995).Google Scholar
11 In systems with a large step-edge barrier,the slope should initially increase quickly as "wedding cake"-type pyramids develop on a base of first layer islands. This was observed for Ag/Ag(111) homoepitaxy by Luo, E.Z. et al. , Appl. Phys. 60, 19 (1995), and Ch. Ammer et al., Surf. Sci. 307-309, 570 (1994).Google Scholar
12 Siegert, M. and Plischke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
13 Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250 (1995).Google Scholar
14 Šmilauer, P. and Vvedensky, D.D., Phys. Rev. B 52, 14263 (1995).Google Scholar
15 Evans, J.W., Vacuum 41, 479 (1990); Phys. Rev. B 43, 3897 (1991).Google Scholar
16 Evans, J.W., Sanders, D.E., Thiel, P.A., and DePristo, A.E., Phys. Rev. B 41, 5410 (1990); D.E. Sanders and J.W. Evans, in "The Structure of Surfaces III", edited by S.Y. Tong et al. (Springer, Berlin, 1991).Google Scholar
17 Kang, H.C. and Evans, J.W., Surf. Sci. 271, 321 (1992).Google Scholar
18 Family, F. and Vicsek, T., "Dynamics of Fractal Surfaces" (World Scientific, Singapore, 1991).Google Scholar
19 Kang, H.C. and Evans, J.W., Surf. Sci. 269/270, 784 (1992).Google Scholar
20 Halstead, D.M. and DePristo, A.E., Surf. Sci. 286, 275 (1993).Google Scholar
21 He, Y.-L. et al. , Phys. Rev. Lett. 69, 3770 (1992).Google Scholar
22 Bartelt, M.C. and Evans, J.W., Surf. Sci. 298, 421 (1993); MRS Proc. 312, 255 (1993).Google Scholar
23 Šmilauer, P. and Harris, S., Phys. Rev. B 51, 14798 (1995).Google Scholar
24 Amar, J.G. and Family, F., Phys. Rev. B 52, 13801 (1995); preprint.Google Scholar
25 In a metal(lOO) geometry, surface atoms are exposed to varying degrees, and suitable weighing is included when calculating W, etc.13. Also, we define the lateral separation, r, so that its components are integral multiples of the separation, 'a', between 4FH sites as follows13: the actual separation between surface atoms with height difference nb is for n even (odd), with .Google Scholar