Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:01:52.082Z Has data issue: false hasContentIssue false

Kinetic Effects and Mechanisms Limiting Substitutional Solubility in the Formation of Supersaturated Alloys by Pulsed Laser Annealing*

Published online by Cambridge University Press:  15 February 2011

C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
B. R. Appleton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
B. Stritzker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
D. M. Zeiner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
S. R. Wilson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
Get access

Abstract

Pulsed laser annealing of silicon implanted by Group (III, V) dopants leads to the formation of supersaturated alloys by nonequilibrium processes occurring in the interfacial region during liquid phase epitaxial regrowth. The distribution coefficient from the melt (k') and the maximum dopant substitutional solubility (CSmax) are far greater than equilibrium values and both are functions of growth velocity. Substitutional solubility is limited by lattice strain and by constitutional supercooling at the interface during regrowth. Values for CSmax obtained at different growth velocities are compared with predictions of thermodynamic limits for solute trapping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

**

Institut fur Festkoperforschung, KFA, Julich, Julich, Germany.

+

Motorola, Inc., Phoenix, Arizona.

*

Research sponsored by the Division of Materials Sciences, U. S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1. See for example, White, C. W., Narayan, J. and Young, R. T., Science 204, 461 (1979) and references therein.Google Scholar
2. Laser-Solid Interactions and Laser Processing–1978 (ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., AIP Conference Proceedings No. 50, American Institute of Physics, New York, 1979).Google Scholar
3. Laser and Electron Beam Processing of Materials (ed. by White, C. W. and Peercy, P. S., Academic Press, New York, 1980).Google Scholar
4. Appleton, B. R., Larson, B. C., White, C. W., Narayan, J., Wilson, S. R. and Pronko, P. P., Ref. 2, p. 291.Google Scholar
5. White, C. W., Pronko, P. P., Wilson, S. R., Appleton, B. R., Narayan, J. and Young, R. T., J. Appl. Phys. 50, 3261 (1979).Google Scholar
6. White, C. W., Wilson, S. R., Appleton, B. R. and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
7. Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. E., Smith, P. R., Surko, C. M. and Venkatesan, T. N. C., Ref. 2, p. 11.Google Scholar
8. Wang, J. C., Wood, R. F. and Pronko, P. P., Appl. Phys. Lett. 33, 455 (1978).Google Scholar
9. Wood, R. F., Wang, J. C., Giles, G. E. and Kirkpatrick, J. R., Ref. 3, p. 37.Google Scholar
10. Cahn, J. W., Coriell, S. R. and Boettinger, W. J., Ref. 3, p. 89.Google Scholar
11. Trumbore, F., Bell System Tech. Journal 39, 205 (1960).CrossRefGoogle Scholar
12. Baker, J. C. and Cahn, J. W., Acta. Metall. 17, 575 (1969).Google Scholar
13. Jackson, K. A., Gilmer, G. H. and Leamy, H. J., Ref. 3, p. 104.Google Scholar
14. White, C. W., Narayan, J. and Young, R. T., Ref. 2, p. 275.Google Scholar
15. Larson, B. C., White, C. W. and Appleton, B. R., Appl. Phys. Lett. 32, 801 (1978).CrossRefGoogle Scholar
16. White, C. W., Wilson, S. R., Appleton, B. R. and Narayan, J., Ref. 3, p. 124.Google Scholar
17. See for example, Jackson, K. A. in Treatise on Solid State Chemistry, Vol. 5 (ed. by Hannay, N. B., Plenum Press, New York, 1975) Chap. 5.Google Scholar