Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:31:19.020Z Has data issue: false hasContentIssue false

Kinetic Control of Dome Cluster Composition by Varying Ge Deposition Rate

Published online by Cambridge University Press:  01 February 2011

E. P. McDaniel
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287–1504
Jeff Drucker
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287–1504 Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
Qian Jiang
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
P. A. Crozier
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
David J. Smith
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287–1504 Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
Get access

Abstract

The mean size of dome clusters grown by molecular beam epitaxy of pure Ge onto Si(100) at substrate temperatures, T, of 550°C and 650°C is deposition rate dependent. For samples with nominal Ge coverages near 8 ML (1 ML = 6.78 ×1014 atoms/cm2) and deposition rates between 1.4 and 17.5 ML/min, higher deposition rates decreased the mean dome diameter and increased the dome areal density. Additionally, the critical volume for the pyramid-to-dome transition decreases with increasing deposition rate for islands grown between T = 550°C and 650°C. By this measure, the Ge content of the dome clusters rises with increasing deposition rate. Quantitative, nm-resolved electron energy loss spectroscopy (EELS) measurements taken in a scanning transmission electron microscope confirm these results. For domes grown at T = 650°C with rates of 1.4 ML/min and 17.5 ML/min, EELS indicates 59% and 70% Ge compositions, respectively. These results show that dome cluster composition may be kinetically controlled by varying the Ge deposition rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Medeiros-Ribeiro, G., Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Phys. Rev. B 58, 3533 (1998).Google Scholar
[2] Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
[3] Medeiros-Ribeiro, G., Bratkovski, A. M., Kamins, T. I., Ohlberg, D. A. A., and Williams, R. S., Science 279, 535 (1998).Google Scholar
[4] Tomitori, M., Watanabe, K., Kobayashia, M., and Nishikawa, O., Appl. Surf. Sci. 76–77, 322 (1994).Google Scholar
[5] Krishnamurthy, M., Drucker, J. S., and Venables, J. A.. J. Appl. Phys. 69, 6461 (1991).Google Scholar
[6] Chaparro, S., Drucker, J., Chandrasekhar, D., McCartney, M. R., and Smith, D. J., Phys. Rev. Lett. 83, 1199 (1999).Google Scholar
[7] Chaparro, S. A., Zhang, Y., Drucker, J., Chandrasekhar, D., and Smith, D. J., J. Appl. Phys. 87, 2245 (2000).Google Scholar
[8] Drucker, J., Zhang, Y., Chaparro, S. A., Chandrasekhar, D., McCartney, M. R., and Smith, D. J., Surf. Rev. Lett. 7, 527 (2000).Google Scholar
[9] Liao, X. Z., Zou, J., Cockayne, D. J. H., Wan, J., Jiang, Z. M., Jin, G., and Wang, K. L., Phys. Rev. B 65, 153306 (2002).Google Scholar
[10] Wan, J., Luo, Y. H., Jiang, Z. M., Jin, G., Liu, J. L., Wang, K. L., Liao, X. Z., and Zou, J., J. Appl. Phys. 90, 4290 (2001).Google Scholar
[11] Capellini, G., DeSeta, M., and Evangelisti, F., Appl. Phys. Lett. 78, 303 (2001).Google Scholar
[12] Malachias, A., Kycia, S., Medeiros-Ribeiro, G., Magalhães-Paniago, R., Kamins, T. I., and Williams, R. S., Phys. Rev. Lett. 91, 176101 (2003).Google Scholar
[13] Magalhães-Paniago, R., Medeiros-Ribeiro, G., Malachias, A., Kycia, S., Kamins, T. I., and Williams, R. S., Phys. Rev. B 66, 245312 (2002).Google Scholar
[14] Stroscio, J. A. and Pierce, D. T., Phys. Rev. B 49, 8522 (1994).Google Scholar
[15] Vvendensky, D. D., Phys. Rev. B 62, 15435 (2000).Google Scholar
[16] Ratsch, C., Zangwill, A., Smilauer, P., and Vvedensky, D. D., Phys. Rev. Lett. 72, 3194 (1994).Google Scholar
[17] Drucker, J. and Chaparro, S., Appl. Phys. Lett. 71, 614 (1997).Google Scholar
[18] Edgerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986).Google Scholar
[19] Floyd, M., Zhang, Y., Driver, K. P., Drucker, J., Crozier, P. A., and Smith, D. J., Appl. Phys. Lett. 82, 1473 (2003).Google Scholar