Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T00:18:01.975Z Has data issue: false hasContentIssue false

Key Phenomena Governing HLW Glass Behavior in the French Deep Geological Disposal

Published online by Cambridge University Press:  27 March 2015

Stéphan Schumacher
Affiliation:
ANDRA, 1/7, rue Jean Monnet, Parc de la Croix-Blanche, 92298 Châtenay-Malabry, France
Christelle Martin
Affiliation:
ANDRA, 1/7, rue Jean Monnet, Parc de la Croix-Blanche, 92298 Châtenay-Malabry, France
Yannick Linard
Affiliation:
ANDRA, 1/7, rue Jean Monnet, Parc de la Croix-Blanche, 92298 Châtenay-Malabry, France
Frédéric Angeli
Affiliation:
CEA, DEN, Laboratoire du Comportement à Long Terme, BP 17171, 30207 Bagnols/Cèze, France.
Delphine Neff
Affiliation:
SIS2M/LAPA, CEA Saclay, 91191 Gif sur Yvette Cedex, France
Abdesselam Abdelouas
Affiliation:
SUBATECH – EMN-CNRS/IN2P3-Université de Nantes, 4 rue Alfred Kastler – La Chantrerie, B.P. 20722, 44307 Nantes cedex 03, France
Xavier Crozes
Affiliation:
EDF R&D, Moret Sur Loing, France
Get access

Abstract

According to the Planning Act of 28th June 2006, Andra is in charge of ensuring the sustainable management of all radioactive waste generated in France, especially the high-level and long-lived vitrified waste produced from spent fuel recycling.

Since 2006, all the studies and research related to the components of HLW cells have been incorporated into a broader R&D program which aims at characterizing and modeling (i) the glass matrix dissolution, (ii) the corrosion of the overpack and the lining, and (iii) the claystone evolution in the near field, considering all the interactions between these surrounding materials. This program, coordinated by Andra, has involved up to eighteen laboratories.

After closure of disposal cells and overpack failure, glass alteration is expected to begin in partially saturated conditions due to hydrogen production resulting from carbon steel corrosion in anoxic conditions. Therefore, the glass should at least partially be hydrated by water vapor during thousands of years until complete saturation. A part of the studies aimed to determine the glass behavior in such conditions, the influence of the main parameters (temperature, relative humidity) and consequences of vapor hydration on subsequent radionuclides release by water leaching.

In addition, the major part of the work focused on the influence of the environment on glass alteration. The effect of clay pore water on glass alteration rates (initial rate, rate drop and residual rate) was determined and particularly that of pH and magnesium. The nature of steel corrosion products and their interactions with glass alteration were also investigated. All these studies relied on experiments in surface laboratories, in Andra’s underground laboratory, together with natural or archeological analogs and modeling studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andra, Dossier 2005. Evaluation of the feasibility of a geological repository in an argillaceous formation, http://www.andra.fr/international/download/andra-international-en/document/editions/266va.pdf (2005)Google Scholar
Neeway, J., PhD Thesis, University of Nantes (2011)Google Scholar
Neeway, J., Abdelouas, A., Grambow, B., Schumacher, S., Martin, C., Kogawa, M., Utsunomiya, S., Gin, S., Frugier, P., J. Non-Cryst. Solids 358, 28942905 (2012)CrossRefGoogle Scholar
Bouakkaz, R., PhD Thesis, University Nantes Angers Le Mans, France (2014)Google Scholar
Gong, W.L., Wang, L.M., Ewing, R.C., Vernaz, E., Bates, J.K., Ebert, W.L., J. Nucl. Mater. 254, 249265 (1998)CrossRefGoogle Scholar
Ait Chaou, A., Abdelouas, A., El Mendili, Y., Bouakkaz, R., Martin, C., Procedia Materials Science (in press)Google Scholar
Jollivet, P., Gin, S., Schumacher, S., Chem. Geol. 330-331, 207217 (2012)CrossRefGoogle Scholar
Jollivet, P., Frugier, P., Parisot, G., Mestre, J.P., Brackx, E., Gin, S., Schumacher, S., J. Nucl. Mater., 420, 508518 (2012)CrossRefGoogle Scholar
Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.-E., Jollivet, P., Ayral, A., De Windt, L., Santarini, G., J. Nucl. Mater, 380, 821 (2008)CrossRefGoogle Scholar
Lemmens, K., J. Nucl. Mater., 298, 1118(2001).CrossRefGoogle Scholar
Schlegel, M.L., Bataillon, C., Benhamida, K., Blanc, C., Menut, D., and Lacour, J.-L., Appl. Geochem. 23, 26192633 (2008)CrossRefGoogle Scholar
Schlegel, M.L., Bataillon, C., Blanc, C., Prêt, D., Foy, E., Environ. Sci. Technol., 44, 15031508 (2010)CrossRefGoogle Scholar
Necib, S., Crusset, D., Michau, N., Foct, F., Schlgel, M.L., Daumas, S., Dewonck, S., Eurcorr European Corrosion Congress (2014)Google Scholar
Neff, D., Saheb, M., Monnier, J., Perrin, S., Descostes, M., L'hostis, V., Crusset, D., Millard, A., Dillmann, P., J. Nucl. Mater., 402, 196205 (2010)CrossRefGoogle Scholar
Saheb, M., Neff, D., Dillmann, P., Matthiesen, H., and Foy, E., J. Nucl. Mater., 379, 118123 (2008)CrossRefGoogle Scholar
Saheb, M., Neff, D., Demory, J., Foy, E. and Dillmann, P., Corros. Eng. Sci. Technol. 45, 381387 (2010a).CrossRefGoogle Scholar
Saheb, M., Descostes, M., Neff, D., Matthiesen, H., Michelin, A. and Dillmann, P., Appl. Geochem. 25, 19371948 (2010b).CrossRefGoogle Scholar
Grambow, B., Zwicky, H.U., Bart, G., Björner, I.K. and Werme, L.O., Mat. Res. Soc. Symp. Proc., 84, 471481 (1987).Google Scholar
Bart, G., Zwicky, H.U., Aerne, E.T., Graber, Th., Z’Berg, D. and Tokiwai, M., Mat. Res. Soc. Symp. Proc., 84, 459470 (1987)Google Scholar
Philippini, V., Naveau, A., Catalette, H. and Leclercq, S., J. Nucl. Mater., 348, 6069 (2006).CrossRefGoogle Scholar
Jordan, N., Marmier, N., Lomenech, C., Giffaut, E. and Ehrhart, J., J. Colloid Interface Sci., 312,(2), 224-229 (2007).CrossRefGoogle Scholar
Mayant, C., Grambow, B., Abdelouas, A., Ribet, S. and Leclercq, S., Phys. Chem. Earth, 33, 991999 (2008).CrossRefGoogle Scholar
Godon, N., Gin, S., Rebiscoul, D., and Frugier, P., Procedia Earth and Planetary Science, 7, 300303 (2013)CrossRefGoogle Scholar
van der Lee, J, De Windt, L., Lagneau, V., Goblet, P., Comput. Geosci. 29, 265275 (2003)CrossRefGoogle Scholar
Burger, E., Rebiscoul, D., Bruguier, F., Jublot, M., Lartigue, J.-E., Gin, S., Appl.Geochem., 31, 159170 (2013)CrossRefGoogle Scholar
De Combarieu, G., Schlegel, M.L., Neff, D., foy, E., Vantelon, D., Barboux, P., Gin, S., Appl. Geochem., 26, 6579 (2011)CrossRefGoogle Scholar
Michelin, A. (2011), PhD Thesis, University of Paris VI – Pierre et Marie Curie.Google Scholar
Michelin, A., Burger, E., Rebiscoul, D., Neff, D., Bruguier, F., Drouet, E., Dillmann, P., Gin, S., Environ. Sci. Technol., 47, 750756 (2013)CrossRefGoogle Scholar