Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:12:24.370Z Has data issue: false hasContentIssue false

Is Transition Metal Incorporated ZnO an Intrinsic Ferromagnetic Semiconductor?

Published online by Cambridge University Press:  01 February 2011

Kanwal P Bhatti
Affiliation:
[email protected], Guru Nanak Dev University, Department of Applied Physics, Amritsar, 143005, India
Sujeet Chaudhary
Affiliation:
[email protected], Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Dinesh K Pandya
Affiliation:
[email protected], Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Subhash C Kashyap
Affiliation:
[email protected], Indian Institute of Technology Delhi, Department of Physics, Hauz Khas, New Delhi, 110016, India
Get access

Abstract

Studies on Mn, Ni and Co doped ZnO systems have revealed that the RTFM present in these systems can be both intrinsic and extrinsic depending on the choice of TM ion incorporated, technique of preparation and post-synthesis processing. Choice of such a technique that ensures better homogeneity and incorporation of TM ions in the ZnO host, leads to the occurrence of intrinsic, stable and robust RTFM. The air ambient processing eliminates the chances of any metallic cluster inclusions, and instead such TM oxide phases are formed that are non-ferromagnetic. However, post synthesis processing like vacuum annealing of ZnO:Co samples under some situations can give rise to occurrence of extrinsic RTFM. But, this can be overcome by certain additional processing step. ZnO:Co samples with intrinsic RTFM, stable upto 900°C annealing with Curie temperatures in excess of 450°C have successfully been prepared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dietl, T. Ohno, H. Matsukura, F. Cibert, J. and Ferrand, D. Science 287, 1019 (2000).Google Scholar
[2] Kolesnik, S. Dabrowski, B. and Mais, J. J. Appl. Phys. 95, 2582 (2004).Google Scholar
[3] Sharma, P. Gupta, A. Rao, K. V. Owens, F. J. Sharma, R. Ahuja, R. Guillen, J. M.O. Johansson, B., and Gehring, G. A. Nat. Mater. 2, 673 (2004).Google Scholar
[4] Kundaliya, D. C. Ogale, S. B. Lofland, S. E. Dhar, S. Metting, C. J. Shinde, S. R. Ma, Z. Varughese, B. Ramanujachary, K. V. Salamanca-Riba, L., and Venkatsan, T. Nat. Mater. 3, 709 (2004).Google Scholar
[5] Costa-Kramer, J. L., Briones, F. Fernandez, J. F. Calballero, A. C. Villegas, M. Diaz, M. Garcia, M. A. and Hernando, A. Nanotechnology 16, 214 (2005).Google Scholar
[6] Garcia, M. A. Ruiz-Gonzalez, M. L., Quesada, A. Costa-Kramer, J. L., Fernandez, J. F. Khatib, S. J. Wennberg, A. Caballero, A. C. Martin-Gonzalez, M. S., Villegas, M. Briones, F. Gonzalez-Calbet, J. M., and Hernando, A. Phys. Rev. Lett 94, 217206 (2005).Google Scholar
[7] Jayakumar, O. D. Salunke, H. G. Kadam, R. M. Mohapatra, M. Yaswant, G. and Kulshreshtha, S. K., Nanotechnology 17, 1278 (2006).Google Scholar
[8] Rao, C. N. R. and Deepak, F. L. J. Mater. Chem 15, 573 (2005).Google Scholar
[9] Kane, M. H. Shalini, K. Summers, C. J. Varatharajan, R. Nause, J. Vestal, C. R. Zhang, Z. J. and Ferguson, I. T. J. Appl. Phys. 97, 023906 (2005).Google Scholar
[10] Norton, D. P. Pearton, S. J. Hebard, A. F. Theodoropoulou, N. Boatner, L. A. and Wilson, R. G., Appl. Phys. Lett. 82, 239 (2003).Google Scholar
[11] Yin, S. Xu, M. X. Yang, L. Liu, J. F. Rosner, H. Hahn, H. Gleiter, H. Schild, D. Doyle, S. Liu, T. Hu, T. D., Muromachi, E. T. and Jiang, J. Z. Phys. Rev. B 73, 224408 (2006).Google Scholar
[12] Zhang, Y. B. Sritharan, T. and Li, S. Phys. Rev. B 73, 172404 (2006).Google Scholar
[13] Thota, Subhash, Dutta, Titas, and Kumar, Jitendra, J. Phys: Condens. Matter 18, 2473 (2006).Google Scholar
[14] Lawes, G. Risbud, A. S. Ramirez, A. B. and Seshadri, R. Phys. Rev. B 71, 045201 (2005).Google Scholar
[15] Lin, H. Chin, T. S. Shih, J. C. Lin, S. H. Hong, T. M. Huang, R. T. Chen, F. R. and Kai, J. J., Appl. Phys. Lett. 85, 621 (2004).Google Scholar
[16] Xu, X. H. Blythe, H. J. Ziese, M. Behan, A. J. Neal, J. R. Mokhtari, A. Ibrahim, R. M. Fox, A. M. and Gehring, G. A. New Journal of Phys. 8, 135 (2006).Google Scholar
[17] Deka, Sasanka and Joy, P. A. Appl. Phys. Lett. 89, 032508 (2006).Google Scholar
[18] Manivannan, A. et al. Dutta, P. Glaspell, G. and Seehra, M. S. J. Appl. Phys. 99, 08M110 (2006).Google Scholar
[19] Park, J. H. Kim, M. G. Jang, H. M. Ryu, S. and Kim, Y. M. Appl. Phys.Lett. 84, 1338 (2004).Google Scholar
[20] Colis, S. Bieber, H. Colin, S. B. Schmerber, G. Leuvrey, C. and Dinia, A. Chem. Phys. Lett. 422, 529 (2006).Google Scholar
[21] Bhatti, K. P. et al. , Solid State Commu. 140 23 (2006).Google Scholar
[22] Bhatti, K.P. et al. , J. Appl. Phys. 101 103919 (2007).Google Scholar
[23] Chaudhary, S. Bhatti, K. P. Pandya, D. K. Kashyap, S. C. and Nigam, A. K., J. Mag. Mag. Mat. 2008 (in press); DOI:10.1016/j.jmmm.2008.03.009Google Scholar
[24] Bhandage, G.T. and Keer, H. V. J. Phys. C: Solid State Phys. 11, L219 (1978).Google Scholar
[25] Lide, D. R. CRC Handbook of Chemistry and Physics, 75th ed., CRC Press, London, 1994 (pp. 12–8).Google Scholar
[26] Kaminski, A. and Sarma, S. D. Phys. Rev. Lett. 88, 247202 (2002).Google Scholar
[27] Berciu, M. and Bhatt, R. N. Phys. Rev. Lett. 87, 107203 (2001).Google Scholar
[28] Coey, J. M. D. Venkatesan, M. and Fitzgerald, C. B. Nature Mater. 4, 173 (2005).Google Scholar
[29] Kim, J. H. Kim, H. Kim, D. Ihm, Y. E. and Choo, W. K. J. Appl. Phys. 92, 6066 (2002).Google Scholar
[30] Hays, J. Phurber, A. Reddy, K. M. Punnoose, A. and Engelhard, M. H. J. Appl. Phys. 99, 08M123 (2006).Google Scholar