Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-12T10:49:44.832Z Has data issue: false hasContentIssue false

Is an Arsenic-Antisite-Defect a Constituent of Hydrogen-Related:Metastable Defects (M3/M4) In GaAs?

Published online by Cambridge University Press:  10 February 2011

T. Okumura
Affiliation:
Department of Electrical Engineering, Tokyo Metropolitan University 1–1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan, [email protected]
T. Shinagawa
Affiliation:
Department of Electrical Engineering, Tokyo Metropolitan University 1–1 Minami-ohsawa, Hachioji, Tokyo 192–0397, Japan, [email protected]
Get access

Abstract

The hydrogen-related metastable defects (M31M4) in n-GaAs, first found by Buchwald et al., were introduced only in the crystals containing the EL2 center. Off-center oxygen (=EL3), could not be responsible for their formation. A quantitative analysis with the samples exposed to atomic hydrogen showed that the M4 defect consisted of two different configurations. One of them did couple with M3, but is latent in the as-exposed state. It was formed after bias annealing at higher temperatures, such as 420 K. The other part of the M4 defect (M4•) existed at room temperature and after annealing at 513K, but disappeared and reappeared upon forward- and reverse-bias annealings, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., J. Appl. Phys. 53,4509 (1982).Google Scholar
2. Lagowski, J., Kaminska, M., Parsey, J. M. Jr., Gotos, H. C., and Lichtensteiger, M., Appl. Phys. Lett. 41, 1078 (1982).Google Scholar
3. Dautremont-Smith, W. C., Nabity, J. C., Swaminathan, V., Stabola, M., Chevallier, J., Tu, C. W.. and Pearton, S. J., Appl. Phys. Lett. 49, 1098 (1986).Google Scholar
4. Cho, H. Y., Kim, E. K., Min, S., Kim, J. B., and Jang, J., Appl. Phys. Lett. 53, 856 (1998).Google Scholar
5. Jalil, A., Heurtel, A., Marfaing, Y., and Chevallier, J., J. Appl. Phys. 66, 5854 (1989).Google Scholar
6. Buchwald, W. R., Johnson, N. M.. and Trombetta, L. P., Appl. Phys. Lett. 50,1007 (1987).Google Scholar
7. Buchwald, W. R.. Gerardi, G. J.. Poindexter, E. H.. Johnson, N. M., Grimmeiss, H. G., and Keeble, D. J., Phys. Rev. B40, 2940 (1989).Google Scholar
8. Leitch, A. W. R., Prescha, Th., and Weber, J., Phys. Rev. B45, 14400 (1992).Google Scholar
9. Tabata, A. S., Pudensi, M. A. A. and Machado, A. M., J. Appl. Phys. 65,4076 (1989).Google Scholar
10. Pfeiffer, G. and Weber, J., Materials Science Forum, 143–147, 873 (1994).Google Scholar
11. Kaufmann, U.. Klausmann, E., Schneider, J., and Alt, H. Ch., Phys. Rev. B43, 12106 (1991).Google Scholar
12. Shinagawa, T. and Qkumura, T., Mat. Res. Soc. Symp. Proc. 378, 447 (1995).Google Scholar
13. Shinagawa, T. and Okumura, T., Mat. Res. Soc. Symp. Proc. 442,417 (1996).Google Scholar
14. Lin, T. C. and Okumura, T., Jpn. J. Appl. Phys. 35, 1630 (1996).Google Scholar
15. Shinagawa, T. and Okumura, T., Appl. Surf. Sci. 117/118, 609 (1997).Google Scholar
16. Okumura, T. and Hoshin, M., Semi-Insulating lll-V Materials, Ohm-sha, North Holland, Tokyo, 1986, pp. 409414.Google Scholar