Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:16:47.689Z Has data issue: false hasContentIssue false

Irreversible and Reversible Behavior of Spin Glasses: Broken Ergodicity

Published online by Cambridge University Press:  21 February 2011

C. M. Soukoulis
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Linden, New Jersey 07036;
G.S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Linden, New Jersey 07036;
K. Levin
Affiliation:
The James Franck Institute, The Unxiversity of Chicago Chicago, Illinois 60637
Get access

Extract

Over the past decade, a great deal of effort has gone into understanding the properties of spin glasses [1,2]. However, because these are rather unique systems which show simultaneously apparent phase transition as well as metastable or glassy behavior, progress has been slow. Though it was initially believed that spin glasses could be treated as if they had a true equilibrium phase transition, we now recognize that this cannot be the whole story. Recently, it has become clear that spin glasses are very complex systems, in which irreversible and time dependent effects play an important role. We now know that one must go beyond the regime of validity of equilibrium thermodynamics. In this paper, we will discuss the mountinq evidence, both experimental and theoretical, for why nonequilibrium approaches are essential in order to understand spin glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews of the experimental results see Mydosh, J. A., in Lecture Notes in Physics, edited by Castelloni, C. et al. (Springer, Berlin, 1981);Google Scholar
1a J. Magn. Magn. Mater. 7, 237 (1978);Google Scholar
1b Beck, P., Prog. Mat. Sci. 23, 1 (1978);Google Scholar
1c Murani, A. P., J. Phys. (Paris) 39, C61517 (1978);Google Scholar
1d Maletta, H., in Excitations in Disordered Solids, edited by Thorpe, M. (Plenum, New York, 1981).Google Scholar
2. For reviews of the theoretical results see Binder, K. and Stauffer, D., in Monte Carlo Methods in Statistical Physics, edited by Binder, K. (Springer, Berlin, 1979), p. 301;Google Scholar
2a Anderson, P. W., in Ill-Condensed Matter, edited by Balian, R., Maynard, R., and Toulouse, G., (North Holland, Amsterdam, 1979), p. 159;Google Scholar
2b de Dominics, C., Phys. Reports 67, 37 (1980);Google Scholar
2c Fischer, K., Phys. Stat. Sol. (b) 116, 357 (1983).Google Scholar
3. Cannella, V. and Mydosh, J. A., Phys. Rev. B6, 4220 (1972);Google Scholar
3a Mulder, C. A., Duyneveldt, A. J. and Mydosh, J. A., Phys. Rev. B. 23, 1384 (1981);Google Scholar
3b B25, 515 (1982).Google Scholar
4. Violet, C. E. and Borg, R. J., Phys. Rev. 149, 540 (1966);Google Scholar
4a Window, B., Phys. Rev. B6, 2013 (1972).Google Scholar
5. Wenger, L. E. and Keesom, P. H., Phys. Rev. B11, 3497 (1975);Google Scholar
5a Phys. Rev. B13, 4053 (1976);Google Scholar
5b Martin, D. L., Phys. Rev. B20, 368 (1979).Google Scholar
6. Ford, P. J. and Mydosh, J. A., Phys. Rev. B14, 2057 (1976);Google Scholar
6a Mydosh, J. A., Ford, P. J., Kawatra, M. P. and Wall, T. E., Phys. Rev. B10, 2845 (1974).Google Scholar
7. Murani, A. P., Phys. Rev. Lett. 37, 450 (1976);Google Scholar
7a Soukoulis, C. M., Grest, G. S. and Levin, K., Phys. Rev. Lett. 39, 58 (1977).Google Scholar
8. Nagata, S., Keesom, P. H. and Harrison, H. R., Phys. Rev. B19, 1633 (1979).Google Scholar
9. Chamberlin, R. V., Hardiman, M., Turkevich, L. A. and Orbach, R., Phys. Rev. B25, 6720 (1982);Google Scholar
9a Monod, P. and Bouchiat, H., J. Physique Letters (Paris) 40, 45 (1982).Google Scholar
10. Tholence, J. L. and Tournier, R., J. de Phys. (Paris) 35, C4 - 229 (1974);Google Scholar
10a Physica 86–88B, 873 (1977).Google Scholar
11. Guy, C. N., J. Phys. F5, 242 (1975);Google Scholar
11a F7, 1505 (1977);Google Scholar
11b F8, 1309 (1978).Google Scholar
12. Ferre, J., Rajchenbach, J. and Maletta, H., J. Appl. Phys. 52, 1697 (1981).Google Scholar
13. Tholence, J. L., Solid State Commun. 35, 113 (1980).Google Scholar
14. Aarts, J., Felsch, W., van Loehneysen, H. and Steglich, F., Z. Phys. B40, 127 (1980).Google Scholar
15. Dahlberg, E. D., Hardiman, M., Orbach, R. and Souletie, J., Phys. Rev. Lett. 42, 401 (1979).Google Scholar
16. Malozemoff, A. P. and Imry, Y., Phys. Rev. B24, 489 (1981).Google Scholar
17. Yeshurun, Y., Ketelsen, L. J. P. and Salamon, M. B., Phys. Rev. B26, 1491 (1982);Google Scholar
17a Salamon, M. B. and Tholence, J. L., J. Magn. Magn. Mater. 31–34, 1375 (1983).Google Scholar
18. Edwards, S. F. and Anderson, P. W., J. Phys. F5, 965 (1975).Google Scholar
19. Fischer, K. H., Phys. Rev. Lett. 34, 1438 (1975).Google Scholar
20. Sherrington, D. and Kirkpatrick, S., Phys. Rev. Lett. 35, 1792 (1975).Google Scholar
21. Thouless, D. J., Anderson, P. W. and Palmer, R. G., Phil. Mag. 35, 593 (1977).Google Scholar
22. Levin, K., Soukoulis, C. M., and Grest, G. S., J. Appl. Phys. 50, 1695 (1979).Google Scholar
23. Binder, K., J. de Phys. (Paris) 39, C6–1527 (1978).Google Scholar
24. Fisch, R. and Harris, A. B., Phys. Rev. Lett. 38, 375 (1977);Google Scholar
24a Ditzian, R. V. and Kadanoff, L. P., Phys. Rev. B19, 4631 (1979).Google Scholar
25. Soukoulis, C. M., Levin, K., and Grest, G. S., Phys. Rev. Lett. 48, 1756 (1982);Google Scholar
25a Phys. Rev. B28 (1983).Google Scholar
26. Soukoulis, C. M., Grest, G. S. and Levin, K., Phys. Rev. Lett. 50, 80 (1983);Google Scholar
26a Phys. Rev. B28 (1983).Google Scholar
27. Prejean, J. J., Joliclerc, M. J. and Monod, P., J. de Phys. (Paris) 41, 427 (1980).Google Scholar
28. Knitter, R. W., Kouvel, J. S. and Claus, H., J. Magn. Magn. Mater. 5, 356 (1977).Google Scholar
29. Borg, R. J. and Kitchens, T. A., J. Phys. Chem. Solids 34, 1323 (1973).Google Scholar
30. Mezei, F., J. Magn. Magn. Mat. 31–34, 1327 (1983).Google Scholar
31. Krey, U. (unpublished).Google Scholar
32. Bray, A. J. and Moore, M. A., J. Phys. C12, L441 (1979);Google Scholar
32a C13, L469 (1980);Google Scholar
32b Ling, D., Bowman, D. R., and Levin, K., Phys. Rev. B (1983);Google Scholar
32c Dasgupta, C. and Sompolinsky, H., Phys. Rev. B26, 4511 (1983).Google Scholar
33. Chamberlin, R. V., Hardiman, M., and Orbach, R., J. Appl. Phys. 52, 1771 (1981).Google Scholar
34. Fert, A. and Levy, P. M., Phys. Rev. Lett. 44, 1538 (1980).Google Scholar
35. Cable, J. W., Werner, S. A., Felcher, G. P. and Wakabayashi, N., Phys. Rev. Lett. 49, 829 (1982).Google Scholar
36. Grest, G. S. and Soukoulis, C.M., Phys. Rev. B (1983).Google Scholar
37. Gabay, M. and Toulouse, G., Phys. Rev. Lett. 47, 201 (1981);Google Scholar
37a Cragg, D. M., Sherrington, D. and Gabay, M., Phys. Rev. Lett. 49, 158 (1982).Google Scholar