Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T08:30:18.686Z Has data issue: false hasContentIssue false

Irradiation Induced Effects at Interfaces in a Nanocrystalline Ceria Thin Film on a Si Substrate

Published online by Cambridge University Press:  18 March 2013

Philip D Edmondson*
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Neil P Young
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
Chad M Parish
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Fereydoon Namavar
Affiliation:
University of Nebraska Medical Center, Omaha, NE 68196, USA
William J Weber
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Materials Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
Yanwen Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Materials Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
*
§Corresponding author: Philip Edmondson, [email protected]
Get access

Abstract

Thin films of nanocrystalline ceria on a Si substrate have been irradiated with 3 MeV Au+ ions to fluences of up to 1x1016 ions cm-2, at temperatures ranging between 160 to 400 K. During the irradiation, a band of contrast is observed to form at the thin film/substrate interface. Analysis by scanning transmission electron microscopy in conjunction with energy dispersive and electron energy loss spectroscopy techniques revealed that this band of contrast was a cerium silicate amorphous phase, with an approximate Ce:Si:O ratio of 1:1:3.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, T., et al. ., MRS Bulletin, 34 (2009) 2027.10.1557/mrs2009.8CrossRefGoogle Scholar
Weber, W.J., Journal of Nuclear Materials, 98 (1981) 206215.10.1016/0022-3115(81)90400-1CrossRefGoogle Scholar
Weber, W.J., Journal of Nuclear Materials, 114 (1983) 213221.10.1016/0022-3115(83)90259-3CrossRefGoogle Scholar
Weber, W.J., Radiation Effects, 83 (1984) 145156.10.1080/00337578408215798CrossRefGoogle Scholar
Weber, W.J., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166167 (2000) 98106.10.1016/S0168-583X(99)00643-6CrossRefGoogle Scholar
Weber, W.J., et al. ., Journal of Materials Research, 13 (1998) 14341484.10.1557/JMR.1998.0205CrossRefGoogle Scholar
Weber, W.J., et al. ., MRS Bulletin, 34 (2009) 4653.10.1557/mrs2009.12CrossRefGoogle Scholar
Edmondson, P.D., et al. ., Scripta Materialia, 65 (2011) 675678.10.1016/j.scriptamat.2011.07.010CrossRefGoogle Scholar
Zhang, Y., et al. ., Physical Review B, 82 (2010) 184105.10.1103/PhysRevB.82.184105CrossRefGoogle Scholar
Alivisatos, A.P., Science, 271 (1996) 933937.10.1126/science.271.5251.933CrossRefGoogle Scholar
Knöner, G., et al. ., Proceedings of the National Academy of Sciences of the United States of America, 100 (2003) 38703873.10.1073/pnas.0730783100CrossRefGoogle Scholar
Norris, D.J., Efros, A.L., and Erwin, S.C., Science, 319 (2008) 17761779.10.1126/science.1143802CrossRefGoogle Scholar
Bai, X.-M., et al. ., Science, 327 (2010) 16311634.10.1126/science.1183723CrossRefGoogle Scholar
Bai, X.-M., et al. ., Physical Review B, 85 (2012) 214103.10.1103/PhysRevB.85.214103CrossRefGoogle Scholar
Edmondson, P.D., et al. ., Acta Materialia, 60 (2012) 54085416.10.1016/j.actamat.2012.07.010CrossRefGoogle Scholar
Edmondson, P.D., et al. ., Physical Review B, 85 (2012) 214113.10.1103/PhysRevB.85.214113CrossRefGoogle Scholar
Zhang, Y., et al. ., Physical Chemistry Chemical Physics, 13 (2011) 1194611950.10.1039/c1cp21335kCrossRefGoogle Scholar
Trovarelli, A., Catalysis Reviews, 38 (1996) 439520.10.1080/01614949608006464CrossRefGoogle Scholar
Namavar, F., et al. ., Nano Letters, 8 (2008) 988996.10.1021/nl072147vCrossRefGoogle Scholar
Ziegler, J.F., Journal of Applied Physics, 85 (1999) 12491272.10.1063/1.369844CrossRefGoogle Scholar
Edmondson, P.D., et al. ., Materials Research Society Symposium Proceedings, 1298 (2011) 111116.10.1557/opl.2011.249CrossRefGoogle Scholar
Edmondson, P.D., et al. ., Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269 (2011) 126132.10.1016/j.nimb.2010.10.014CrossRefGoogle Scholar
Michael, J.R., et al. ., Journal of Microscopy, 160 (1990) 4153.10.1111/j.1365-2818.1990.tb03046.xCrossRefGoogle Scholar
Haigh, S.J., et al. ., ChemPhysChem, 12 (2011) 23972399.10.1002/cphc.201100376CrossRefGoogle Scholar
Okamoto, H., Journal of Phase Equilibria and Diffusion, 25 (2004) 9899.10.1007/s11669-004-0186-6CrossRefGoogle Scholar
Weitzer, F., et al. ., Journal of Materials Science, 26 (1991) 20762080.10.1007/BF00549170CrossRefGoogle Scholar
Parish, C.M., et al. ., Journal of Nuclear Materials, 418 (2011) 106109.10.1016/j.jnucmat.2011.07.035CrossRefGoogle Scholar