No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
While spacecrafts experience temperatures from -120 to 110°C on the orbit, their surface reaches extremely high temperatures, well above 1000 °C, during descent into the atmosphere due to aerodynamic heating. Sophisticated insulation systems are designed for thermal protection. One of the steps in designing a protection system is experimental temperature measurements.
Neutron flux induces point defects formation and accumulation in diamond and SiC single crystals, which causes overall lattice expansion. During thermal annealing this process is reversed, so the annealing temperature and time result in the “reduced” lattice parameter (measured by X-Ray diffraction), which allows determining the maximum temperature, if the exposure time is known. This paper describes the use of irradiated single crystal high temperature sensors for measuring temperatures in thermal protection systems during spacecraft descent, as well as other space applications. These additional applications include measuring the furnace temperature during single crystal growth in space at zero gravity, and measuring the rocket combustion chamber turbo pump temperature.