No CrossRef data available.
Article contents
Iron Phosphates as Cathodes of Lithium-Ion Batteries
Published online by Cambridge University Press: 26 February 2011
Abstract
This study focusses on optimizing the parameters of the hydrothermal synthesis to produce iron phosphates for lithium ion batteries, with an emphasis on pure LiFePO4 with the olivine structure and compounds containing a higher iron:phosphate ratio. Lithium iron phosphate (LiFePO4) is a promising cathode candidate for lithium ion batteries due to its high theoretical capacity, environmentally benign and the low cost of starting materials. Well crystallized LiFePO4 can be successfully synthesized at temperatures above 150 °C. The addition of a reducing agent, such as hydrazine, is essential to minimize the oxidation of ferrous (Fe2+) to ferric (Fe3+) in the final compound. The morphology of LiFePO4 is highly dependent on the pH of the initial solution. This study also investigated the lipscombite iron phosphates of formula Fe1.33PO4OH. This compound has a log-like structure formed by Fe-O octahedral chains. The chains are partially occupied by the Fe3+ sites, and these iron atoms and some of the vacancies can be substituted by other cations. Most of the protons can be ion-exchanged for lithium, and the electrochemical capacity is much increased.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 973: Symposium BB – Mobile Energy , 2006 , 0973-BB05-01
- Copyright
- Copyright © Materials Research Society 2007