No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
The iron manganites FexMn(3−x)O4 synthesis by soft chemistry method have been studied. The main difficulty is to obtain single phase spinel with high Mn content (0.4< x < 1.3). Oxalate precursor powders of these materials with controlled shape and nanoscopic size have been prepared. The precursors are then heat treated with a H2/H2O/N2 gas mixture at low temperature. The resulting stoechiometric spinels are metastable phases with high specific surface area and are highly reactive toward oxygen. Therefore, these oxide can be oxidized in air at low temperature in order to produce mixed valence defect manganites FexMn(3−x)O4+δ with a good reproducibility on the oxygen content. Although, some problems persist for the higher Mn contents, as the oxygen partial pressure for the reduction must be controlled precisely in order to produce the stoechiometric spinel at low temperature. The development of a low temperature reduction system, with oxygen partial pressure controlled by oxygen electrochemical pumping, is in progress.