Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:30:40.758Z Has data issue: false hasContentIssue false

Ionization Radiation Effects And Mechanisms

Published online by Cambridge University Press:  15 February 2011

Yuli Vladimirsky
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70803.
John D. Scott
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70803.
Pradeep K. Bhattacharya
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70803.
Get access

Abstract

A systematic approach for predicting radiation stability of materials and devices is presented. The conceptual basis is a consideration of the radiolysis potentially occurring in x-ray-irradiated materials as a multi-stage process: a) primary radiation excitations (PRE); b) secondary generation of isolated electronic and structural defects resulting from PRE relaxation; and c) interaction, accumulation, and coagulation of defects resulting in change of device electronic properties and in degradation of optical material. This predictive technique involves specific relevant information in a relatively simple context for the purpose of modeling the radiolysis process. It should find general application in selecting materials for x-ray optical elements such as masks, filters, windows where resistance to radiolysis is required as well as for photoresists where radiolytic sensitivity is necessary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lader, Keith J., Chemical Kinetics, Third Edition (Harper & Row, New York, 1987).Google Scholar
2 Dienes, G. J. and Vineyard, G. H., Radiation Effects in Solids (Interscience, New York, 1957).Google Scholar
3 Kelly, B. T., Irradiation Damage to Solids (Pergamon, New York, 1967).Google Scholar
4 Hughes, A. E. and Pooley, D., Real Solids and Radiation (Wykeham Publications, Springer-Verlag, New York, 1975).Google Scholar
5 Hobbs, L. W., in Introduction in to Analytical Electron Microscopy, edited by Hren, J. J.. Goldstein, J. I., and Joy, D. C. (Plenum, New York, 1979).Google Scholar
6 Vladimirsky, y., J. Vac. Sci. Technol. B6, 183 (1988).CrossRefGoogle Scholar
7 Primak, W. and Wolfe, G., Phys. Rev. 132, 1612, (1963).Google Scholar
8 Vladimirskii, Y., Zakharov, G., Nikitinskaya, T., and Reterov, V., Sov. Phys. Solid State 10, 2250 (1969).Google Scholar
9 Vavilov, V. S. and Ukhin, N. A., Radiation Effects in Semiconductors and Semiconductor Devices (Consultants Bureau, New york, 1977)Google Scholar
10 Handbook of Chemistry and Physics, 46th ed., edited by West, R. C., Selby, S. M., and Hodgman, C. D. (Chemical Rubber, Cleveland, Ohio, 1965).Google Scholar
11 American Institute of Physics Hadbook, 3dr ed., edited by Gray, Dwight E. (McGraw-Hill, New York, 1982).Google Scholar
12 Hadbook of Optical Constants of Solids, edited by Palik, Edward D. (Academic Press, New York, 1985).Google Scholar
13 Pines, David, Elementary Excitations in Solids (W. A. Benjamin Inc., New York, 1964).Google Scholar
14 Glicksman, M., in Solid State Physics, edited by Ehrenreich, H., Seitz, F., Turnbull, D. (Academic Press, New York, 1971).Google Scholar
15 Burns, Gerald, Solid State Physics (Academic Press, Inc., Orlando, Florida, 1985).Google Scholar
16 Thompson, M. W., Defects and Radiation Damage in Metals (Cambridge University, Cambridge, 1969)Google Scholar
17 Ehrfeld, W., Glashouser, W., Mönchmeyer, D., and Schleib, W., Microelectron. Eng., 5, 463, (1986).Google Scholar
18 Johnson, W. A., Levy, R. A., Resnick, D. J., etc., J. Vac. Sci. Technol. B5, 257 (1987).Google Scholar
19 Levy, R. A., Resnick, D. J., and Janof, A. W., J. Vac. Sci. Technol. B 6, (1988).Google Scholar
20 Dana, S. S., Acosta, R., Silverman, J., and Maldonado, J. R., J. Vac. Sci. Technol. B 6, (1987).Google Scholar
21 Dana, S. S., Bates, J., Maldonado, J. R., Vladimirsky, O., Fair, R., and Vishvanathan, R., J. Vac. Sci. Technol. B 6, (Dec 1987) pp.233240.Google Scholar
22 King, P. L., Pan, L., Pianetta, P., Mauger, P., and Seligson, D., J. Vac. Sci. Technol. B 6, (1987).Google Scholar
23 Balzer, R., Peisl, H., and Waidelich, W., Phys. Status Solidi 15, 495, (1966).Google Scholar
24 Vladimirsky, Y., Nikitinskaya, T., and Reterov, V., Soy. Phys. J. 14, 1721 (1974).Google Scholar
25 Muray, A., Isaacson, M, Adesida, I., and Whitehead, B., J. Vac. Sci. Technol. B 1, 1091Google Scholar
26 adimirsky, l., Nikitinskaya, T., Soy. Phys. Solid State (USA), 7, 2912 (1967).Google Scholar
27 Vladimirsky, Y., akharov, G. M., Nikitinskaya, T., Tyutin, M. S., Soy. Phys. Solid State (USA), 10, 29 (1968).Google Scholar