Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-10-04T03:38:32.085Z Has data issue: false hasContentIssue false

Ion-Beam-Source Studies of Hydrogen Motion and Trapping in Silicon

Published online by Cambridge University Press:  28 February 2011

Carleton H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Robert A. Anderson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We have investigated the “real time” diffusion and trapping of hydrogen insilicon with rapid 1 MHz capacitance and current-voltage measurements on boron and phosphorus doped Schottky-barrier and MIS structures. Hydrogen is introduced by implanting hydrogen ions into the front electrodes of these capacitors. As interpreted by numerical modeling, our data from p-type silicon indicate that the 300 K hydrogen diffusivity is =10-10cm2/s, that =10% of the mobile hydrogen is positively charged, and that these ions are trapped at boron acceptors with a capture radius of 70 Å. The behavior of the n-type capacitors was quite different; hydrogenation resulted in the appearance of a dense layer of positive charge quite near the silicon surface, and in some cases negatively charged species which compensate phosphorus donors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Johnson, N. M., Appl. Phys. Lett. 47, 874 (1985).CrossRefGoogle Scholar
2. Tavendale, A. J., Alexiev, D., and Williams, A. A., Appl. Phys. Lett. 472, 316 (1985).Google Scholar
3. Pantelides, S. T., Appl. Phys. Lett. 50, 995 (1987).Google Scholar
4. Wieringen, A. Van and Warmoltz, N., Physics 22, 849 (1956).Google Scholar
5. Johnson, N. M., Biegelson, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
6. Pearton, S.J., Proc. 13th Int. Conf. on Defects in Semiconductors, Aug. 12-17, 1984, Coronado, CA, Ed. by Kimerling, L. C. and Parsey, J. M. Jr, (AIME, NY) p. 737 (1985).Google Scholar
7. Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A43, 153 (1987).Google Scholar
8. Hall, R. N., IEEE Trans. Nucl. Sci NS-31, 320 (1984).Google Scholar
9. Seager, C. H., Anderson, R. A., and Panitz, J. K. G., J. Mater. Res. 2, 96 (1987).Google Scholar
10. Seager, C. H. and Anderson, R. A., Appl. Phys. Lett. 53, 1181 (1988).CrossRefGoogle Scholar
11. Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
12. Johnson, N. M. and Herring, C., Proc. 1st Intl. Conf. on Defects in Semiconductors, in press.Google Scholar
13. Johnson, N. M., Ponce, F. A., Street, R. A., and Nemanich, R. J., Phys. Rev. B35, 4166 (1987).Google Scholar