Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T02:09:16.482Z Has data issue: false hasContentIssue false

Ion-Beam Modification of Colloidal Silica Particle Masks to Tailor the Size of Ordered Arrays of Ag Nanostructures Produced by Nanosphere Lithography

Published online by Cambridge University Press:  11 September 2014

Eder Reséndiz
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
Ulises Morales
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
Cecilia Salinas
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
Octavio Graniel
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
L.M. López
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
Juan-Carlos Cheang-Wong
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F., 01000, México.
Get access

Abstract

Spherical submicrometer-sized silica particles were prepared by the sol-gel method and deposited as a monolayer onto silicon wafers, in order to use them as a mask to create regular arrays of nanoscale surface features. Thus, by e-gun evaporation of a 50 nm thick Ag film through the silica mask, Ag nanostructures were obtained after removal of the silica monolayer. In order to tailor the mask characteristics (size and interparticle spacing), the silica masks were irradiated at room temperature with 4 and 6 MeV Si ions at different fluences up to 5×1015 ion/cm2, perpendicularly to the sample surface. After the irradiation the silica particles turned into oblate particles, as a result of the increase of the particle dimension perpendicular to the ion beam and the decrease in the parallel direction. By this way, the mask openings of the silica particle monolayer were modified as a function of the irradiation parameters, and the subsequent Ag e-gun evaporation allowed the formation of ordered arrays of Ag features. The size, shape and interparticle spacing of both the silica particles and the Ag deposits were determined by scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braunschweig, A.B., Schmucker, A.L., Wei, W.D., Mirkin, C.A., Chem. Phys. Lett. 486, 89 (2010).CrossRefGoogle Scholar
Born, A., Wiesendanger, R., Appl. Phys. A 68, 131 (1999).CrossRefGoogle Scholar
Haes, A.J., Van Duyne, R.P., J. Am. Chem. Soc. 124, 10596 (2002).CrossRefGoogle Scholar
Winzer, M., Kleiber, M., Dix, N., Wiesendanger, R., Appl. Phys. A 63, 617 (1996).Google Scholar
Haynes, C.L., Van Duyne, R.P., J. Phys. Chem. B 105, 5599 (2001).CrossRefGoogle Scholar
van Dillen, T, Polman, A., Fukarek, W., van Blaaderen, A., Appl. Phys. Lett. 78, 910 (2001).CrossRefGoogle Scholar
Cheang-Wong, J.C., Morales, U., Oliver, A., Rodríguez-Fernández, L., J. Rickards. Nucl. Instr. and Meth. B 242 (2006) 452454.CrossRefGoogle Scholar
Benyagoub, A., Loffler, S., Rammensee, M., Klaumünzer, S., Nucl. Instr. and Meth. B 65, 228 (1992).CrossRefGoogle Scholar
Klaumünzer, S., Nucl. Instr. and Meth. B 215, 345 (2004).CrossRefGoogle Scholar
Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
Ziegler, J. F., Biersack, J. and Littmark, U., in The Stopping and Range of Ions in Solids (SRIM 2008), http://www.srim.org/ Google Scholar
DigitalMicrograph™ (DM), component of the Gatan Microscopy Suite (GMS), Gatan Inc.Google Scholar
Klaumünzer, S., Gutzmann, A., Nukleonika 39, 25 (1994).Google Scholar