Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T02:40:26.572Z Has data issue: false hasContentIssue false

Ion-Beam Induced Epitaxial Crystallization of GexSi1–x/Si Heterostructures

Published online by Cambridge University Press:  25 February 2011

R.G. Elliman
Affiliation:
Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001, Victoria, Australia.
M.C. Ridgway
Affiliation:
Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001, Victoria, Australia.
J.S. Williams.
Affiliation:
Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne 3001, Victoria, Australia.
Get access

Abstract

Amorphous GexSi1–x layers are shown to crystallize epitaxially from an underlying (100) oriented Si substrate when irradiated with 1.5 MeV Ne ions at temperatures as a low as 275°C. For a given Ne fluence, the extent of crystallization is shown to increase with increasing Ge content, consistent with the increased defect production rate in these alloys. It has also been demonstrated that strained layer configurations can be grown by ion-beam annealing and that such layers exhibit a commensurate to incommensurate transformation within the same composition range as layers grown by molecular beam epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Holmen, G., Buren, A. and Hogberg, P., Rad. Effects, 24, 51 (1975).Google Scholar
2 Linnros, J., Holmen, G. and Svensson, B., Phys. Rev. B32, 2770, (1985).Google Scholar
3 Elliman, R.G., Williams, J.S., Brovm, W.L., Leiberich, A., Maher, D.M. and Knoell, R.V. Nucl. Instr. Meth. B19/20. 435 (1987).Google Scholar
4 Johnson, S.T., Elliman, R.G. and Williams., J.S. Nucl. Instr. Meth. B39, 449 (1989).Google Scholar
5 LaFerla, A., Rimini, E. and Ferla., G. Appl. Phys. Lett. 52, 712 (1988).Google Scholar
6 Priolo, F., LaFerla, A., Spinella, C., Rimini, E., Ferla, G., Baroetto, F. and Licciardello., A. Appl. Phys. Lett. 53, 2605 (1988).Google Scholar
7 Yu, A.J., Mayer, J.W., Eaglesham, D.J. and Poate., J.M. Appl. Phys. Lett. 54, 2342 (1989).Google Scholar
8 Elliman, R.G., Ridgway, M.C. and Williams., J.S. Appl. Phys. Lett. (In Press).Google Scholar
9 Ridgway, M.C., Elliman, R.G. and Williams., J.S. Nucl. Instr. Meth. B. (In Press).Google Scholar
10 Ridgway, M.C., Elliman, R.G. and Williams., J.S. Appl. Phys. Lett. (Submitted).Google Scholar
11 Fiory, A.T., Bean, J.C., Feldman, L.C. and Robinson., I.K. J. Appl. Phys. 56, 1227 (1984).Google Scholar
12 Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 2, 1 (1988).Google Scholar
13 Linnros, J., Elliman, R.G. and Brown., W.L. J. Mat. Res. 2 1208 (1988).Google Scholar