Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:59:02.201Z Has data issue: false hasContentIssue false

Ion-beam assisted pulsed laser deposition of textured transition-metal nitride films

Published online by Cambridge University Press:  01 February 2011

Ruben Hühne
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Martin Kidszun
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Konrad Güth
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Franziska Thoss
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Bernd Rellinghaus
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Ludwig Schultz
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Bernhard Holzapfel
Affiliation:
[email protected], IFW Dresden, Institute for Metallic Materials, Dresden, Germany
Get access

Abstract

Ion-beam assisted deposition (IBAD) offers the possibility to prepare thin textured films on amorphous or non-textured substrates. It was shown within the last decade that the ion beam influences the nucleation in material with a rocksalt structure leading to a strong cube texture already within the first 10 nanometres. Among these materials, transition metal nitrides exhibit interesting physical properties as superconductivity, metallic behaviour or superior hardness. Therefore, a reactive IBAD process was applied for the preparation of highly textured transition metal nitride layers using pulsed laser deposition of pure metals in combination with a nitrogen-containing ion beam. The results on the in-plane textured growth of TiN are promising for the development of conducting buffer layer architectures for YBCO coated conductors based on the IBAD approach. Furthermore, this approach was used to prepare other highly textured transition metal nitride thin films like NbN and ZrN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., and Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
2. Arendt, P. N., Foltyn, S. R., Civale, L., DePaula, R. F., Dowden, P. C., Groves, J. R., Holesinger, T. G., Jia, Q. X., Kreiskott, S., Stan, L., Usov, I., Wang, H., and Coulter, J. Y., Physica C 412–414, 795 (2004).Google Scholar
3. Hühne, R., Beyer, C., Holzapfel, B., Oertel, C. G., Schultz, L., and Skrotzki, W., J. Appl. Phys. 90, 1035 (2001).Google Scholar
4. Hühne, R., Fähler, S., and Holzapfel, B., Appl. Phys. Lett. 85, 2744 (2004).Google Scholar
5. Hühne, R., Güth, K., Kidszun, M., Kaltofen, R., Schultz, L., and Holzapfel, B., J. Phys. D 41, 245404 (2008).Google Scholar
6. Dong, L., Zepeda-Ruiz, L. A., and Srolovitz, D. J., J. Appl. Phys. 89, 4105 (2001).Google Scholar
7. Hühne, R., Fähler, S., Holzapfel, B., Oertel, C. G., Schultz, L., and Skrotzki, W., Physica C 372–376, 825 (2002).Google Scholar
8. Usov, I. O., Arendt, P. N., Groves, J. R., Stan, L., and DePaula, R. F., Nucl. Instr. Meth.Phys. B 240, 661 (2005).Google Scholar
9. Hühne, R., Fähler, S., Schultz, L., and Holzapfel, B., Physica C 426–431, 893 (2005).Google Scholar
10. Findikoglu, A. T., Kreiskott, S., te Riele, P. M., and Matias, V., J.Mater. Res. 19, 501 (2004).Google Scholar
11. Güth, K., Hühne, R., Matias, V., Rowley, J., Thersleff, T., Schultz, L., and Holzapfel, B., IEEE Trans. Appl. Supercond. 19, accepted (2009).Google Scholar
12. Hühne, R., Güth, K., Kidszun, M., Kaltofen, R., Matias, V., Rowley, J., Schultz, L., and Holzapfel, B., MRS Proceedings 1150E (this volume), RR0401 (2008).Google Scholar