Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T10:39:47.442Z Has data issue: false hasContentIssue false

Ion-Assisted Regrowth of Deposited Si Layers Mechanisms and Morphology

Published online by Cambridge University Press:  25 February 2011

F. Priolo
Affiliation:
Dipartimento di Fisica, Universitá di Catania, Catania (ITALY)
C. Spinella
Affiliation:
Dipartimento di Fisica, Universitá di Catania, Catania (ITALY)
A. La Ferla
Affiliation:
Dipartimento di Fisica, Universitá di Catania, Catania (ITALY)
A. Battaglia
Affiliation:
Dipartimento di Fisica, Universitá di Catania, Catania (ITALY)
E. Rimini
Affiliation:
Dipartimento di Fisica, Universitá di Catania, Catania (ITALY)
G. Ferla
Affiliation:
SGS-Thomson, Catania (ITALY)
A. Carnera
Affiliation:
Dipartimento di Fisica, Universitá di Padova, Padova (ITALY)
A. Gasparotto
Affiliation:
Dipartimento di Fisica, Universitá di Padova, Padova (ITALY)
Get access

Abstract

Ion-assisted regrowth of chemical vapor deposited amorphous Si layers was investigated for different cleaning procedures. The process was directly monitored by transient reflectivity measurements. The c-a interface stops at the deposited layer/substrate interface for doses depending on the effectiveness of the cleaning procedure in removing the native oxide. Small concentrations of twins are found in the regrown layer. Their amount is also correlated to the cleaning procedure. In oxygen implanted bare Si samples the ion-induced growth rate is reduced to 0.3 of the normal value at a peak O concentration of 1 X 1021/cm3. The results on the ion-induced regrowth of deposited layers are explained in terms of oxygen profile broadening during irradiation and retardation of the growth for the presence of dissolved O.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Burns, G.P., Appl. Phys. Lett. 53, 1423 (1988)10.1063/1.99961CrossRefGoogle Scholar
(2) Linnros, J., Holmen, G., and Svennson, B., Phys. Rev. B32, 2270 (1980)Google Scholar
(3) Elliman, R.G., Williams, J.S., Brown, W.L., Leiberich, A., Maher, D.H. and Knoell, R.V., Nucl. Instrum. Meth. B19/20, 435 (1987)10.1016/S0168-583X(87)80086-1Google Scholar
(4) Priolo, F., Ferla, A.La, and Rimini, E., J. Mater. Res. 3, Nov./Dec. (1988)CrossRefGoogle Scholar
(5) Harith, M., Ferla, A.La, Ferla, G. and Rimini, E., Semicond. Sci. Technol. 3, 641 (1988)10.1088/0268-1242/3/7/003CrossRefGoogle Scholar
(6) Ferla, A.La, Rimini, E. and Ferla, G., Appl. Phys. Lett. 52, 712, (1988)Google Scholar
(7) Priolo, F., Ferla, A.La, Spinella, C., Rimini, E., Ferla, G., Baroetto, F., and Licciardello, A., Appl. Phys. Lett., Dec. 26 (1988)Google Scholar
(8) Olson, G.L., Kokoroski, S.A., Roth, J.A., and Hess, L.D., Meter. Res. Soc. Symp. Proc. 13, 141 (1983)10.1557/PROC-13-141Google Scholar
(9) Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T. W. J. Appl. Phys. Lett. 48, 4241 (1980)Google Scholar
(10) Program made by Implant Sciences Co., Danvers, MAGoogle Scholar
(11) Priolo, F., Poate, J.M., Jacobson, D.C., Linros, J., Batstone, J.L., and Campisatao, S.U., Appl. Phys. Left. 52, 1213 (1988)10.1063/1.99161Google Scholar
(12) Spinella, C. et al., to be publishedGoogle Scholar