Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:32:58.344Z Has data issue: false hasContentIssue false

Ion Track Enabled High Aspect Ratio Flexible PCB Via Technology

Published online by Cambridge University Press:  01 February 2011

Mikael Lindeberg
Affiliation:
Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden
Hanna Yousef
Affiliation:
Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden
Erik Öjefors
Affiliation:
Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden
Anders Rydberg
Affiliation:
Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden
Klas Hjort*
Affiliation:
Dept. of Engineering Sciences, The Ångström Laboratory, Uppsala University Box 534, SE-751 21 Uppsala, Sweden
*
* corresponding author's e-mail: [email protected]
Get access

Abstract

By combining ion track technology with ordinary low-resolution printed circuitboard lithography it is possible at low cost to create high aspect ratios via connectors, as solid plugs or consisting of bundles of sub-micron connector wires at a small total cross-section.

Ion track enabled microwave circuits in flexible printed circuit boards are suggested to be used in applications like inductors, ferromagnetic resonance microwave filters, circulators and magnetoresistive sensors. In this paper we demonstrate this technology with integrated printed circuitboard devices in two different flexible polyimide-based foils (Espandex and Kapton HN), using the ultra-high-density vias and the sub-micron wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Krongelb, S., Romankiw, L.T. and Tornello, J.A., IBM J. of Res. and Development 42, 575585 (1998).Google Scholar
[2]Coombs’ printed circuits handbook“, 5th ed., ed. C.F. Coombs, Jr., 2001, McGraw-Hill, New York.Google Scholar
[3] McKenney, D., Demaso, A. and Numakura, D., Microvia technologies for high-density flex circuits. CircuiTree 13, 1020 (2000).Google Scholar
[4] Akita, M. in Proc. 4th Ann Flexible Circuits Nat. Conf. ‘Meeting the Challenge of the Next Generation of Packaging’;. (Inst. Interconnecting & Packaging Electron. Circuits 1998. Northbrook, IL, USA) 117123.Google Scholar
[5] Richter, K., Orfert, M. and Drescher, K., Surface Coatings and Technology 97, 481487 (1997).Google Scholar
[6] Martin, C.R., Science 266, 19611966 (1994).Google Scholar
[7] Schönenberger, C., Zande, B.M.I., Fokkink, L.G.J., Henny, M., Schmid, C., Krüger, M., Bachtold, A., Huber, R., Birk, H. and Staufer, U., J. Phys. Chem. B 101, 54975505 (1997).Google Scholar
[8] Fert, A. and Piraux, L., Magnetism, J. and Magnetic Materials 200, 338358 (1999).Google Scholar
[9] Doudin, B., Blondel, A. and Ansermet, J.P., J. Appl. Phys. 79, 60906094 (1996).Google Scholar
[10] Saito, M., Kano, T., Seki, T. and Miyagi, M., Infrared Phys. Technol. 35, 709714 (1994).Google Scholar
[11] Metz, S., Trautmann, C., Bertsch, A. and Renaud, P., J. Micromechanics and Microengineering 14, 324–31 (2004).Google Scholar
[12] Encinas-Oropesa, A., Demand, M. and Piraux, L., J. Applied. Phys., 89, 67046706 (2001).Google Scholar
[13] Pignard, S., Goglio, G., Huynen, I., Radulescu, A. and Piraux, L., IEEE Trans Magnetics 36, 34823484 (2000).Google Scholar
[14] Huynen, I., Goglio, I.G., Vanhoenacker, D. and Vander Vorst, A., IEEE Microwave Guided Wave Lett. 9, 401403 (1999).Google Scholar
[15] Saib, A., Vanhoenacker-Janvier, D., Raskin, J.-P., Crahay, A. and Huynen, I., in Proc. 2001 1st IEEE Conf. on Nanotechnol., IEEE-NANO 2001 (Maui, HI, USA, 28–30 Oct. 2001) 260265.Google Scholar
[16] Lindeberg, M. and Hjort, K., Microsystem Technol. 10, 608621 (2004).Google Scholar
[17] Klintberg, L., Lindeberg, M. and Thornell, G., Nucl. Instr. Methods in Physics Res. B 184, 536543 (2001).Google Scholar
[18] Lotfi, A.W. and Lee, F.C. in Proc. IEEE Industry Appl. Soc. Ann. Meeting. (Toronto, Ont., Canada, 1993) 11691175.Google Scholar