Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:55:04.772Z Has data issue: false hasContentIssue false

Ion Mixing Processes

Published online by Cambridge University Press:  25 February 2011

Marc-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
T. C. Banwell
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
B. M. Paine
Affiliation:
California Institute of Technology, Pasadena, Ca 91125
Get access

Abstract

We consider ion mixing in the low temperature regime, where it is insensitive to temperature. Mixing of most thin markers is Gaussian, independent of irradiation flux, and varies linearly with fluence. However, the mixing in some media varies widely between markers of similar mass and appears to correlate with thermal diffusion constants. In bilayer systems, the profile of long-range mixing is exponential, and the number of mixed atoms scales linearly with fluence. This can be modeled successfully with simple collisional theory. Short range mixing scales with the square root of the fluence, but again shows strong correlations with known bulk chemical properties. We conclude that chemical driving forces and low energy transport mechanisms such as interstitial migration play major roles in ion mixing, even at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matteson, S., Mezey, G., and Nicolet, M-A. in: Proceedings of the Symposium on Thin Films and Interfaces, Baglin, J. E. E. and Poate, J. M., eds. (The Electrochemical Society, Princeton, 1980), Vol. 80–2, p. 242.Google Scholar
2. Matteson, S., Paine, B. M., Grimaldi, M. G., Mezey, G., and Nicolet, M-A., Nucl. Instr. Meth. 182/183, 43 (1981).Google Scholar
3. Paine, B. M., Nicolet, M-A., and Banwell, T. C. in: Metastable Materials Formation by Ion Implantation, Picraux, S. T. and Choyke, W. J., eds. (North-Holland, New York, 1982), MRS Symposia Proceedings Vol. 7,p. 79.Google Scholar
4. Barcz, A. J. and Nicolet, M-A., (to be published in Appl. Phys. A).Google Scholar
5. Westendorp, H., Wang, Z. L., and Saris, F. W., Nucl. Instr. Meth. 194, 453 (1982).Google Scholar
6. Barcz, A. J., Paine, B. M., and Nicolet, M-A., (to be published in A ppl Phys. Lett.).Google Scholar
7. Andersen, H. H., Appl. Phys. 18, 131 (1979).Google Scholar
8. Haff, P. K. and Switkowski, Z. E., J. Appl. Phys. 48, 3383 (1977).Google Scholar
9. Tsaur, B. Y., Matteson, S., Chapman, G., Liau, Z. L., and Nicolet, M-A., Appl. Phys. Lett. 35, 825 (1979).Google Scholar
10. Sigmund, P. and Gras-Marti, A., Nucl. Instr. Meth. 182/183, 25 (1981).Google Scholar
11. Matteson, S., Paine, B. M., and Nicolet, M-A., Nucl. Instr. Meth. 182/183, 53 (1981).Google Scholar
12. Littmark, U. and Hofer, W. O., Nucl. Instr. Meth. 168, 329 (1980).Google Scholar
13. Winterbon, K. B., Ion Implantation Range and Energy Deposition Distributions (Plenum Press, New York, 1975), Vol. 2.Google Scholar
14. Brotherton, S. D. and Lowther, J. E., Phys. Rev. Lett. 44, 606 (1980).Google Scholar
15. Brotherton, S. D., Bradley, P., and Bicknell, J., J. Appl. Phys. 50, 3396 (1979).Google Scholar
16. Keenan, J. A. and Larrabee, G. B. in: VLSI Electronics, Einspruch, N. G., ed., Vol. 6, Einspruch, N. G. and Larrabee, G. B., eds. (Academic Press, New York, 1983), Chap. 1, Appendix p. 48.Google Scholar
17. Weber, E. R., Appl. Phys. A30, 1 (1983).Google Scholar
18. Sigmund, P., Appl. Phys. A30, 43 (1983).Google Scholar
19. Kelly, R. and Sanders, J. B., Surf. Sci. 57, 143 (1976),Google Scholar
and Dzioba, S. and Kelly, R., J. Nucl. Mat. 76, 175 (1978).Google Scholar
20. Matteson, S. and Nicolet, M-A. in: Metastable Materials Formation by Ion Implantation, Picraux, S. T. and Choyke, W. J., eds. (North-Holland, New York, 1982), MRS Symposia Proceedings Vol. 7, p. 3.Google Scholar
21. Christel, L A,.Gibbons, J. F., and Mylroie, S., Nucl. Instr. Meth. 182/183, 187 (1981).Google Scholar
22. Hirao, T., Inoue, K., Yaegashi, Y., and Takayanagi, S., Jap. J. Appl. Phys. 18, 647 (1979).Google Scholar
23. Villepelet, B., Ferrieu, F., Grouillet, A., Golanski, A., Gaillard, J. P., and Ligean, E., Nucl. Instr. Meth. 182/183, 137 (1981).Google Scholar
24. Delafond, J., Picraux, S. T., and Knapp, J. A., Appl. Phys. Lett. 38, 237 (1981).Google Scholar
25. Besenbacher, F., Bø ttiger, J., Nielsen, S. K., and Whitlow, H. J., Appl. Phys. A29, 141 (1982).Google Scholar
26. Banwell, T., Liu, B. X., Golecki, I., and Nicolet, M-A., Nucl. Instr. Meth. 209/210, 125 (1983).Google Scholar
27. Banwell, T. and Nicolet, M-A., (This Conference).Google Scholar
28. Van Rossum, M., Shreter, U., Johnson, W. L., and Nicolet, M-A., (This Conference).Google Scholar
29. LeClaire, A. D., J. Nucl. Mat. 67&70, 70 (1978).Google Scholar
30. Wieluński, L. S., Paine, B. M., Liu, B. X., and Nicolet, M-A., phys. stat. sol. (a)72, 399 (1982).Google Scholar
31. Wielunśki, L. S., Lien, C.-D., Liu, B. X., and Nicolet, M-A. in: Metastable Materials Formation by Ion Implantation, Picraux, S. T. and Choyke, W. J., eds. (North-Holland, New York, 1982), MRS Symposia Proceedings Vol. 7, p. 139.Google Scholar
32. Matteson, S., Roth, J., and Nicolet, M-A., Rad. Effects, 42, 217 (1979).Google Scholar
33. Mayer, J. W., Tsaur, B. Y., Lau, S. S., and Hung, L.-S., Nucl. Instr. Meth. 182/183, 1 (1981).Google Scholar
34. Averback, R. S., Thompson, L. J. Jr., Moyle, J., and Schalit, M., J. Appl. Phys. 53, 1342 (1982).Google Scholar