Published online by Cambridge University Press: 01 February 2011
Structural, morphological and electrical characteristics of Al-implanted p+/n 4H-SiC diodes are compared for the same implantation process and post implantation annealing with identical stationary and cooling cycles but different heating velocity. Al+ ions were implanted at 400°C, with energies in the range 250-350 keV and total fluence of 1.2×1015 cm−2. Post implantation annealing processes were done at 1600°C for 30 min with a constant heating velocity in the range 7 – 40°C/sec and an abrupt cooling cycle. Gas in the annealing ambient was high purity Ar. The Al depth profile of annealed and as implanted samples were equal except for concentrations below 10E17 cm−3 where the former profiles showed a diffusion tail. With the increase of the heating velocity of the post implantation annealing process, sheet resistance of the Al implanted layer and diode leakage currents decrease while the surface roughness increases.