Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:31:59.312Z Has data issue: false hasContentIssue false

Ion Implantation Technique For Simultaneous Formation of A Shallow Silicon p-n Junction and a Shallow Silicide-Silicon Ohmic Contact

Published online by Cambridge University Press:  15 February 2011

B.-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173, (U.S.A.)
C. H. Anderson Jr.
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173, (U.S.A.)
Get access

Abstract

Electron beam evaporation is used to coat a p-type silicon substrate with a thin layer of tungsten and then with alternating layers of silicon and tungsten. Bombardment of the coated substrate with As+ ions causes intermixing of the metal and silicon layers, dispersion of contaminant atoms at the interface between the first metal layer and the substrate, and implantation of arsenic atoms in the substrate. Subsequent thermal annealing produces a shallow silicide–silicon ohmic contact and simultaneously activates the implanted arsenic donors to form a shallow p–n+ junction. This technique has been used for the fabrication of mesa diodes with good junction characteristics. A simplified version, in which only a single tungsten layer is deposited on the substrate, has been used as a self–aligned process in the fabrication of metal/oxide/semiconductor field effect transistors with a polycide gate. In the transistors the silicide contacts to the source and drain regions can be made very close to the gate, reducing both the series resistance of these regions and the overall device size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Murarka, S. P., J. Vac. Sci. Technol., 17 (1980) 775.CrossRefGoogle Scholar
2 Locker, L. D. and Capio, C. D., J. Appl. Phys., 44 (1973) 4366.CrossRefGoogle Scholar
3 Guivarc'h, A., Auvray, P., Berthou, L., Le Cun, M., Boulet, J. P., Henoc, P., Pelous, G. and Martinez, A., J. Appl. Phys., 49 (1978) 223.Google Scholar
4 Kumar, V., J. Electrochem. Soc., 123 (1976) 262.Google Scholar
5 Tsaur, B.-Y. and Hung, L. S., Appl. Phys. Lett., 37 (1980) 922.Google Scholar
6 Chiang, S. W., Chow, T. P., Reihl, R. F. and Wang, K. L., J. Appl. Phys., 52 (1981) 4027.Google Scholar
7 Wielunski, L. S., Lien, C.-D., Liu, B.-X. and Nicolet, M.-A., in Picraux, S. T. and Choyke, W. J. (eds.), Proc. Symp. on Metastable Materials Formation by Ion Implantation, Materials Research Society Meet., Boston, 1981, p. 139.Google Scholar
8 Morimoto, M., Nagasawa, E., Okabayashi, H. and Kondo, M., 1981 Int. Electron Devices Meet., Dig. Tech. Papers, Washington, DC, IEEE, New York, 1981, p. 655.Google Scholar
9 Baglin, J. E. E., Dempsey, J. J., Hammer, W., d'Heurle, F. M., Petersson, C. S. and Serrano, C., J. Electron. Mater., 8 (1979) 641.Google Scholar
10 Yanagisawa, S. and Fukuyama, T., J. Electrochem. Soc., 127 (1980) 1150.Google Scholar
11 Tsai, M. Y., Petersson, C. S., d'Heurle, F. M. and Maniscalco, V., Appl. Phys. Lett., 37 (1980) 295.Google Scholar
12 Murarka, S. P., Read, M. H. and Chang, C. C., J. Appl. Phys., 52 (1981) 7450.Google Scholar
13 Shibata, T., Hieda, K., Sato, M., Konaka, M., Dang, R. L. M. and lizuka, H., 1981 Int. Electron. Devices Meet., Dig. Tech. Papers, Washington, DC, IEEE, New York, 1981, p. 647.Google Scholar