Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:39:30.299Z Has data issue: false hasContentIssue false

Ion Implantation Doping of Semi-Insulating Polycrystalline Silicon

Published online by Cambridge University Press:  22 February 2011

Salvatore Lombardo
Affiliation:
Dipartimento di Fisica della Universitá, corso Italia, 57, 195129 Catania, Italy
S. U. Campisano
Affiliation:
Dipartimento di Fisica della Universitá, corso Italia, 57, 195129 Catania, Italy
Get access

Abstract

The study of doping of silicon nano-grains in semi-insulating polycrystalline silicon is of paramount importance since intense room-temperature luminescence at 1.54 µm has been demonstrated in this silicon-based semiconductor when doped with erbium ions. We have investigated the formation of p- and n-type layers of semi-insulating polycrystalline silicon by implantation and diffusion of B, P, As, and Er. The room-temperature resistivity can be changed by more than six orders of magnitude for both p- and n-type doping. A dramatic decrease of resistivity is observed for dopant concentrations above a threshold level; this effect is explained by assuming that the free-carrier motion is limited by grain boundary barriers and the electrical conduction is due to thermionic emission and tunneling of the carriers through the barriers. The prevalence of one mechanism over the other depends upon temperature, oxygen concentration and doping. In the undoped material the barrier height is large (≈ 0.5 eV), but for dopant concentrations above the threshold, it decreases with the doping level. Correspondingly, the conductivity increases by many orders of magnitude. The determination of the threshold value allows the evaluation of donor and acceptor grain boundary trap densities. Diodes have been fabricated by implantation and diffusion of boron and erbium. The I-V characteristics of these diodes are interpreted on the basis of the material modeling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Matsushita, T., Aoki, T., Otsu, T., Yamoto, H., Ayashi, H., Okayama, M., and Kawana, Y., Jpn. J. Appl. Phys. Suppl. 15, 35 (1976).Google Scholar
2 Mc Ginn, J. T. and Goodman, A. M., Appl. Phys. Lett. 34, 601 (1979).Google Scholar
3 Tarng, M. L., J. Appl. Phys. 49, 4069 (1978).Google Scholar
4 Hamasaki, M., Adachi, T., Wakayama, S., and Kikuchi, M., J. Appl. Phys. 49, 3987 (1978).Google Scholar
5 Brunson, K. M., Sands, D., Thomas, C. B., Jeynes, C., and Watts, J. F., Philos. Mag B 61, 361 (1990).Google Scholar
6 Lombardo, S., Campisano, S. U., and Baroetto, F., Phys. Rev. B 47, 13561 (1993).Google Scholar
7 Hartstein, A., Tsang, J. C., DiMaria, D. J., and Dong, D. W., Appl. Phys. Lett. 36, 836 (1980).Google Scholar
8 Lombardo, S., Campisano, S. U., and Baroetto, F., Appl. Phys. Lett. 63, 470 (1993).Google Scholar
9 Lombardo, S., Campisano, S. U., van den Hoven, G. N., Cacciato, A., and Polman, A., Appl. Phys. Lett. 63, 1942 (1993).Google Scholar
10 Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. H., Eaglesham, D. J., Fitzgerald, E. A., and Poate, J. M., J. Appl. Phys. 70, 2667 (1991).Google Scholar
11 Lombardo, S., Campisano, S. U., and Nicotra, M., J. Appl. Phys. 75, January 1st 1994 issue.Google Scholar
12 Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1981) p. 98.Google Scholar
13 Chynoweth, A. G., Feldmann, W. L., and Logan, R. A., Phys. Rev. 121, 684 (1961).Google Scholar