Article contents
Ion Implantation Doping of InGaP, InGaAs, and InAlAs
Published online by Cambridge University Press: 26 February 2011
Abstract
The activation of Si+ and Be+ ions implanted into InGaP, InGaAs or InAlAs grown by GSMBE and OMVPE was investigated as a function of ion dose and annealing temperature. Activation efficiencies close to 100% were obtained in InGaP and InGaAs for Be doses up to ∼1014 cm−2 and annealing temperatures of 700–850°C. Activation of Be was less efficient in InAlAs. By contrast, implanted Si displayed a saturation in active sheet electron densities at 1–3 × 1013 cm−2 and required higher annealing temperatures for optimum activation efficiency. High sheet resistance (≤108 μ/□) regions were created by O+ implantation into n+ InGaP or InAlAs, with hopping conduction dominating carrier transport in the bombarded material. For post-implant annealing temperatures above 750°C, the conductivity was restored to its initial value. No evidence was found for the creation of electrically active oxygen-related deep levels in either material.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 2
- Cited by