Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:50:02.909Z Has data issue: false hasContentIssue false

Ion Implantation and Misfit Dislocation Formation in P/P+Silicon

Published online by Cambridge University Press:  10 February 2011

Petra Feichtinger
Affiliation:
Dept of Materials Science and Engineering, University of California, Los Angeles, CA 90095.
Hiroaki Fukuto
Affiliation:
Dept of Materials Science and Engineering, University of California, Los Angeles, CA 90095.
Rajinder Sandhu
Affiliation:
Dept of Materials Science and Engineering, University of California, Los Angeles, CA 90095.
Benjamin Poust
Affiliation:
Dept of Materials Science and Engineering, University of California, Los Angeles, CA 90095.
Mark S. Goorsky
Affiliation:
Dept of Materials Science and Engineering, University of California, Los Angeles, CA 90095.
Get access

Abstract

We determined that self implantation of pseudomorphically strained silicon epitaxial layers greatly attenuates strain relaxation. We employed highly boron doped 150 mm diameter silicon with a nominally un-doped, 2.5 μm thick epitaxial layer (p/p+). The compressively strained layer (mismatch ≈ 1.5 × 10−4) showed inhomogeneous relaxation after epitaxial growth, with misfits forming only near the wafer periphery. High temperature rapid thermal annealing was employed after ion implantation to study misfit dislocation nucleation and glide. Our results suggest that low dose ion implantation has a potential to reduce misfit dislocation propagation and nucleation in epitaxial thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fukuto, H., Feichtinger, P., Goorsky, M.S., in Defects in Silicon III, edited by Abe, T., Bullis, W.M., Kobayashi, S., Lin, W., Wagner, P. (Electrochem. Soc. Proc. 99–1, Pennington, NJ, 1999), pp. 162171.Google Scholar
2. Paine, D. C., Howard, D. J., Stoffel, N. G., J. Mater. Res. 5 (5), 1023 (1990).Google Scholar
3. Theodore, N.D., Tam, G., Whitfield, J., MRS Symposium Proceedings 319, 159 (1994).Google Scholar
4. Hull, R., Bean, J.C., Bonar, J.M., Appl. Phys. Lett. 56, 2445 (1990).Google Scholar
5. Lie, D. Y.C., Theodore, N.D., Song, J.H., J. Appl. Phys. 77, 5160 (1995).Google Scholar
6. Stirpe, M.B., Perovic, D.D., Lafontaine, H.L., Proc. Royal Microscopical Soc., 127 (1997).Google Scholar
7. Goorsky, M.S., Feichtinger, P., Fukuto, H., Phil. Trans. A, accepted for publication (1999).Google Scholar
8. Fukuto, H., Feichtinger, P., U'Ren, G.D., accepted for publication in J. Cyst. Growth (1999).Google Scholar
9. Horng, H.T., Goorsky, M.S., Appl. Phys. Lett. 68 (11), 1537 (1996).Google Scholar
10. Stolk, P.A., Gossmann, H.-J., Eaglesham, D.J., J. Appl. Phys. 81 (9), 6031 (1997).Google Scholar
11. Cowern, N.E.B., Janssen, K.T.F., and Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
Goldberg, R.D., Simpson, T.W., Mitchell, I.V., Nuclear Instruments and Methods in Physics Research B106, 216 (1995).Google Scholar