Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T10:20:19.003Z Has data issue: false hasContentIssue false

Ion dose dependence on solid phase epitaxy of amorphous silicon carbide induced by ion implantation

Published online by Cambridge University Press:  11 February 2011

In-Tae Bae
Affiliation:
Department of Materials Science and Engineering, Osaka University, Osaka, Japan
Manabu Ishimaru
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
Yoshihiko Hirotsu
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
Get access

Abstract

Amorphous silicon carbides (a-SiC) fabricated by Xe+ ion implantation into 6H-SiC (0001) to fluences of 1015 and 1016/cm2 have been annealed at 850 °C for 1 hour. Transmission electron microscopy (TEM) observations revealed that the 1015 Xe+/cm2 implanted sample was completely recrystallized, while most of the a-SiC remains in the 1016 Xe+/cm2 implanted sample. Pair-distribution function analyses of both of the as-implanted samples show that the peak intensity of Si-C heteronuclear bonds is higher and the peak intensities of Si-Si and C-C homonuclear bonds are lower in the 1015 Xe+/cm2 implanted sample, indicating that the atomistic structure of the 1015 Xe+/cm2 implanted sample is more chemically ordered than that of the 1016 Xe+/cm2 implanted sample. This result suggests that more chemically ordered atomistic structure of 1015 Xe+/cm2 implanted a-SiC leads to complete recrystallization during thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davies, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmond, J. A., Proc. IEEE 79, 677 (1991).Google Scholar
2. Heera, V. and Skorupa, W., Mater. Res. Soc. Symp. Proc. 438, 241 (1997).Google Scholar
3. Bohn, H. G., Williams, J. M., MacHargue, C. J., and Begun, G. M., J. Mater. Res. 2, 107 (1987).Google Scholar
4. Satoh, M., Nakaike, Y., and Nakamura, T., J. Appl. Phys. 89, 1986 (2001).Google Scholar
5. Mori, N., Oikawa, T., Harada, Y., and Miyahara, J., J. Electron. Microsc. 39, 433 (1990).Google Scholar
6. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
7. Devanathan, R., Weber, W. J., and Gao, F., J. Appl. Phys. 90, 2303 (2001).Google Scholar
8. Weber, W. J., Wang, L. M., Yu, N., and Hess, N. J., Mater. Sci. Eng. A253, 62 (1998).Google Scholar
9. Heera, V., Prokert, F., Schell, N., Seifarth, H., Fukarek, W., Voelskow, M., and Skorupa, W., Appl. Phys. Lett. 70, 3531 (1997).Google Scholar
10. Ishimaru, M., Bae, I.-T., Hirotsu, Y., Matsumura, S., and Sickafus, K. E., Phys. Rev. Lett. 89 055502 (2002)Google Scholar
11. Meneghini, C., Pascarelli, S., Boscherini, F., Mobilio, S., and Evangelisti, F., J. Non-Cryst. Solids 137–138, 75 (1991).Google Scholar
12. Bentley, J., Angelini, P., Gove, A. P., Sklad, P. S., and Fisher, A. T., Inst. Phys. Conf. Ser. 98, 107 (1990).Google Scholar