Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T06:46:56.257Z Has data issue: false hasContentIssue false

Ion Bean Deposition of Multilayer Magnetic Films

Published online by Cambridge University Press:  16 February 2011

Masakatsu Senda*
Affiliation:
NTT Applied Electronics Laboratories, Tokai, Ibaraki 319-11, JAPAN
Get access

Abstract

This work investigates the modification of Fe based ion beam sputtered magnetic multilayer films in order to realize good soft-magnetic properties. Fe is used as the main magnetic material because it is the single element with the highest saturation magnetization. Then, I attempt to obtain Fe with zero magnetostriction and soft-magnetic properties artificially using a multilayering technique, while maintaining the highest possible saturation magnetization. Magnetostriction is changed by one of two following causes: by a change in the balance between positive and negative magnetostriction layers, as seen in for example Fe/Co film, or by a change in crystal orientation, as seen in for example Fe/Si02 film. Multilayer film with positive and negative magnetostriction layers is confirmed to show the same inverse magnetostrictive effect as that in uniform film. Also, the small crystal grains and the magnetostatic coupling cause a decrease in anisotropy dispersion, and lead to soft-magnetic properties, in the multilayer films. Additionally, the minimum coercivity in Fe/ SiO2 film corresponds well to the maximum in-plane uniaxial anisotropy and the minimum perpendicular anisotropy where magnetization is restricted almost completely in the plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tago, A., Nishimura, C. and Yanagisawa, K., IEEE Trans. Magn. MAG-21, 2032 (1988).Google Scholar
2. Senda, M. and Nagai, Y., J. Appl. Phys. 65, 3151 (1989).Google Scholar
3. Nagai, Y. and Sends, M., J. Appl. Phys. 64, 4108 (1988).Google Scholar
4. Senda, N. and Nagai, Y., J. Appl. Phys. 65, 1238 (1989); 68, 3508 (1990); Jpn, J. Appl. Phys. 30, 62 (1991).Google Scholar
5. Senda, M. and Nagai, Y., J. Vac. Sci. Technol. A8, 13 (1990).Google Scholar
6. Klokholm, E., IEEE Trans. Magn. MAG-1, 819 (1976).Google Scholar
7. Calcagno, Paul A. and Thompson, David A., Rev. Sci. Instrum. 46, 904 (1975).Google Scholar
8. Torok, E. J., White, R. A., Hunt, A. J. and Oredson, H. N., J. Appl. Phys. 33, 3037 (1962).Google Scholar
9. Lee, E. W., Rept. Prog. Phys. 18, 184 (1955).Google Scholar
10. Honda, K. and Shimizu, S., Phil. Nag., 6, 392 (1903).Google Scholar
11. Hall, R. C., J. Appl. Phys. 30, 816 (1959).Google Scholar
12. Lichtenberger, F., Ann. Physik 10, 45 (1932).Google Scholar
13. Bozorth, R. N., Ferromagnetism (Van Nostrand, Princeton, NJ, 1951).Google Scholar
14. Tatsumoto, E. and Okamoto, T.. J. Phys. Soc. Jpn. 14, 1588 (1959).Google Scholar
15. Chan, W. S., Mitsuoka, K., Miyajima, H. and Chikazumi, S., J. Phys. Soc. Jpn. 48, 822 (1980).Google Scholar
16. Hoffmann, H., J. Appl. Phys. 35, 1790 (1964); K. J. Harte, J. Appl. Phys., 39, 1503 (1968).Google Scholar
17. Draaisma, H. J. O., de Jonge, W. J. M. and den Breeder, F. J. A., J. Magn. Magn. Mater. 66, 351 (1987).Google Scholar
18. Fujiwara, H., J. Phys. Soc. Jpn. 20, 2092 (1965).Google Scholar
19. Clow, H., Nature 194, 1035 (1962).Google Scholar
20. Yelon, A., Physics of Thin Films (Academic. New York, 1971) Vol.6.Google Scholar