Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:26:45.551Z Has data issue: false hasContentIssue false

Ion Beam Synthesis of IrSi3 by 1-MeV Ir Ion Implantation into Si(111)

Published online by Cambridge University Press:  22 February 2011

T. P. Sjoreen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
H.-J. Hinneberg
Affiliation:
Forschungszentrum Jülich, Postfach 1913, 5170 Jülich, Germany
Get access

Abstract

The formation of a Si/IrSi3/Si heterostructure by 1-MeV Ir ion implantation and subsequent annealing has been studied for different doses (0.1-2.25 × 1017 Ir/cm2), substrate temperatures (450°-600°C) and annealing temperatures (1000°-1200°C) using Rutherford backscattering spectrometry, ion channeling and cross-sectional transmission electron microscopy. The heterostructure formation is observed to depend strongly on the processing conditions. The best structure, nearly continuous and precipitate-free, is obtained by implanting 1.8-2.0 × 1017 Ir/cm2 at a substrate temperature of 550°C and annealing at 1100°C for 5 h. A stoichiometric IrSi3 layer can also be produced by furnace annealing at 1150°C for 1 h or by rapid-thermal-annealing at 1200°C for 3 min. Other substrate temperatures generally lead to a structure with a discontinuous IrSi3 layer frequently interrupted by large surface precipitates or islands. The origin of these islands, as well as the dependence of the heterostructure on processing parameters, is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Technische Universitat Chemnitz-Zwickau, Postfach 964, 09009 Chemnitz, Germany

Research sponsored by the Division of Materials Science, U. S. Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1 Wittmer, Marc, Phys. Rev. B42, 5249 (1990).Google Scholar
2 Tsaur, Bor-Yeu, Weeks, M. M., Trubiano, R., Pellegrini, P. W., and Yew, T.-R., IEEE Electron Device Lett. 9, 650 (1988).Google Scholar
3 Yu, K. M., Katz, B., Wu, I. C., and Brown, I. G., Nucl. Instr. Meth. B58, 27 (1991).Google Scholar
4 Sjoreen, T. P., Hinneberg, H.-J., Proc. Mat. Res. Soc. 279, 243 (1993).Google Scholar
5 Short, K. T., White, Alice E., Eaglesham, D. J., Jacobson, D. C., and Poate, J. M., Mat. Res. Soc. Proc. 235, 279 (1992).Google Scholar
6 White, Alice. E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W., Appl. Phys. Lett. 5OB, 19 (1987); F. W. Smith and G. Ghidini, J. Electrochem. Soc. 129, 1300 (1982).Google Scholar
7 Hinneberg, H.-J., Sjoreen, T. P. and Chisholm, M. F., these proceedings.Google Scholar
8 Sjoreen, T. P. and Hinneberg, H.-J., to be published.Google Scholar
9 Mantl, S., Mat. Sci. Reports 8, 1 (1992).Google Scholar
10 Dekempeneer, E. H. A., Ottenheim, J. J. M., Vandenhoudt, D. E. W., Bulle-Lieuwma, C. W. T., and Lathouwers, E. G. C., Nucl. Instr. Meth. B55, 769 (1991).Google Scholar
11 Jebasinski, R., Mantl, S., and Dieker, Chr., Thin Solid Films 223, 298 (1993).Google Scholar