Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T22:57:54.401Z Has data issue: false hasContentIssue false

Ion beam radiation effects on InAs semiconductor quantum dots

Published online by Cambridge University Press:  17 March 2011

J. Zhu
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
M. Thaik
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
M. Yakimov
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
S. Oktyabrsky
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
A. E. Kaloyeros
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
M. B. Huang
Affiliation:
Department of Physics and Institute of Materials Research and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222
Get access

Abstract

Self-assembled quantum dots (QDs) have attracted significant attention because of their potential applications in novel semiconductor devices. In this work, we investigated radiation effects induced by 1.0 MeV proton ion beams on InAs self-assembled quantum dots. In particular, we emphasized the effects of lattice environments of QDs on their luminescence emission after ion beam irradiation. Photoluminescence (PL) spectroscopy was used to characterize the optical properties of QDs subjected to proton irradiation and post-irradiation annealing. Compared to the single-layer QDs grown in GaAs films, the QDs embedded in an AlAs/GaAs superlattice exhibited much higher PL degradation resistance to proton beam bombardment, e.g., at the highest dose (1.0×1014 cm−2) used in this work, a difference of ~ 20-fold in PL intensity was found between the QDs configured in these two different lattice structures. After thermal annealing of irradiated QD samples, ion beam enhanced blueshift of PL was observed to be much more pronounced for the single-layer QDs. We discuss mechanisms that may result in the differences in optical response to ion beams between QDs with different lattice surroundings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencse

1. Weisbuch, C. and Vinter, B., Quantum Semiconductor Structures (Academic Press, New York 1991).Google Scholar
2. Stintz, A., Liu, G. T., Gray, A. L., Spillers, R., Delgado, S. M. and Malloy, K. J., J. Vac. Sci. Technol. B 18, 1496 (2000).Google Scholar
3. Wellmann, P. J., Schoenfeld, W. V., Garcia, I. M. and Petroff, P. M., J. Eletron. Mat. 27, 1030 (1998).Google Scholar
4. Schoenfeld, W. V., Chen, C.-H., Petroff, P. M. and Hu, E. L., Appl. Phys. Lett. 73, 2935 (1998).Google Scholar
5. Leon, R., Swift, G. M., Magness, B., Taylor, W. A., Tang, Y. S., Wang, K. L., Dowd, P. and Zhang, Y. H., Appl. Phys. Lett. 76, 2074 (2000).Google Scholar
6. Piva, P. G., Goldberg, R. D., Mitchell, I. V., Labrie, D., Leon, R., Charbonneau, S., Wasilewski, Z. R. and Fafard, S., Appl. Phys. Lett. 77, 624 (2000).Google Scholar
7. Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
8. Petitprez, E., Moshegov, N. T., Marega, E. Jr, Mazel, A., Dorignac, D. and Fourmeaux, R., J. Vac. Sci. Technol. B 18, 1493 (2000).Google Scholar
9. Chiquito, A. J., Pusep, Y. A., Mergulhão, S., Galzerani, J. C., Moshegov, N. T. and Miller, D. L., J. Appl. Phys. 88, 1987 (2000).Google Scholar
10. Solomon, G. S., Trezza, J. A., Marshall, A. F. and Harris, J. S. Jr, Phys. Rev. Lett. 76, 952 (1996).Google Scholar
11. Marcinkevičius, S. and Leon, R., Appl. Phys. Lett. 76, 2406 (2000).Google Scholar
12. Ballet, P., Smathers, J. B. and Salamo, G. J., Appl. Phys. Lett. 75, 337 (1999).Google Scholar
13. Arzberger, M., Käsberger, U., Böhm, G. and Abstreiter, G., Appl. Phys. Lett. 75, 3968 (1999).Google Scholar
14. Xie, Q. H., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
15. Teichert, C., Lagally, M. G., Peticolas, L. J., Bean, J. C. and Tersoff, J., Phys. Rev. B 53, 16334 (1996).Google Scholar
16. Lipinski, M. O., Schuler, H., Schmidt, O. G., Eberl, K. and Jin-Phillipp, N. Y., Appl. Phys. Lett. 77, 1789 (2000).Google Scholar
17. Marzin, J.-Y., Gérard, J.-M., Izraël, A., Barrier, D., Bastard, G., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
18. Grundmann, M., Stier, O. and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
19. Saarinen, K., Hautojärvi, P., Keinonen, J., Rauhala, E., Räisä, J. nen and Corbel, C., Phys. Rev. B 43, 4249 (1991).Google Scholar
20. Perret, N., Morris, D., Franchomme-Fossé, L., Côté, R., Fafard, S., Aimez, V. and Beauvais, J., Phys. Rev. B 62, 5092 (2000).Google Scholar