Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T10:29:10.813Z Has data issue: false hasContentIssue false

Ion Beam Processing of Optical Materials

Published online by Cambridge University Press:  25 February 2011

F. L. Williams
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
L. L. Boyer
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
D W. Reicher
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
J. J. McNally
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
G. A. Al-Jumaily
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
J. R. McNeil
Affiliation:
University of New Mexico Department of Electrical and Computer Engineering Center for High Technology Materials Albuquerque, NM 87131
Get access

Abstract

We have deposited thin films of optical materials using ion beam sputtering and ion assisted deposition techniques. It is possible to obtain good quality film material deposited on substrates at temperatures lower than normally required. Ion assisted deposition influences film stoichiometry and packing density, which in turn determine optical and mechanical properties of the film material. We discuss two general indicators which appear helpful in predicting the degree to which these occur.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herrmann, W. C. Jr., and McNeil, J. R., “Ion Beam Applications for Optical Coating,” Optical Thin Films, Proc. SPIE, 325, 101 (1982).CrossRefGoogle Scholar
2. Harper, J. M. E., Cuomo, J. J., and Kaufman, H. R., “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part II. Applications,” J. Vac. Sci. Technol. 21, 737 (1982).CrossRefGoogle Scholar
3. Hirsch, E. H., and Varga, I. K., “Thin Film Annealing by Ion Bombardment,” Thin Solid Films, 69, 99 (1980).CrossRefGoogle Scholar
4. Martin, P. J., MacLeod, H. A., Netterfield, R. P., Pacey, G. C., and Sainty, W. G., “Ion Beam-Assisted Deposition of Thin Films,” Appl. Opt. 22, 178 (1983).CrossRefGoogle ScholarPubMed
5. Williams, F. L., Reicher, D. W., Juang, C.-B., and McNeil, J. R., “Metal Oxides Deposited Using Ion Assisted Deposition at Low Temperature,” J. Vac. Sci. Technol. A7, in press (1989).Google Scholar
6. Sites, J. R., Gilstrap, P., and Rujkorakarn, R., “Ion Beam Sputter Deposition of Optical Coatings,” Opt. Eng. 22, 447, (1983).CrossRefGoogle Scholar
7. Harper, J. M. E., Cuomo, J. J., and Hentzell, H. T. G., “Quantitative Ion Beam Process for the Deposition of Compound Thin Films,” Appl. Phys. Lett., 43, 547 (1983).CrossRefGoogle Scholar
8. Ogura, S., and Macleod, H. A., “Water Sorption Phenomena in Optical Thin Films,” Thin Solid Films, 34, 371 (1976).CrossRefGoogle Scholar
9. McNally, J. J., Al-Jumaily, G. A., McNeil, J. R., and Bendow, B., “Ion Assisted Deposition of Optical and Protective Coatings for Heavy Metal Fluoride Glass,” Appl. Opt., 25, 1973 (1986).CrossRefGoogle ScholarPubMed
10. Hurley, R. E., and Williams, E. W., “Ion Plating on Plastic Substrates,” Thin Solid Films, 92, 99 (1982).CrossRefGoogle Scholar
11. Tran, D. C., Sigel, G. H. Jr., and Bendow, B., “Heavy Metal Fluoride Glasses and Fibers, A Review,” J. Lightwave Technol., 2, 566 (1984).CrossRefGoogle Scholar
12. McNally, J. J., Jungling, K. C., Williams, F. L., and McNeil, J. R., “Optical Coatings Deposited Using Ion Assisted Deposition,” J. Vac. Sci. Technol., A5, 2145 (1987).CrossRefGoogle Scholar
13. Kaufman, H. R., Cuomo, J. J., and Harper, J. M. E., “Technology and Applications of Broad-Beam Ion Sources Used in Sputtering. Part 1. Ion Source Technology,” J. Vac. Sci. Technol., 21, 725 (1982).CrossRefGoogle Scholar
14. Manafacier, J. C., Gasiot, J., and Fillard, J. P., “A Simple Method for the Determination of the Optical Constants n, k and the Thickness of a Weakly Absorbing Thin Film,” J. Phys. E. Sci. Instru., 9, 1002 (1976).CrossRefGoogle Scholar
15. Herrmann, W. C. Jr., “E-Beam Deposition Characteristics of Reactively Evaporated Ta2O5 for Optical Interference Coatings,” J. Vac. Sci. Technol., 18, 1303 (1981).CrossRefGoogle Scholar
16. Demiryont, H., Sites, J. R. and Geib, K., “Effects of Oxygen Content on the Optical Properties of Tantalum Oxide Films Deposited by Ion-Beam Sputtering,” Appl. Opt. 24, 490 (1985).CrossRefGoogle ScholarPubMed
17. Behrisch, R., and Scherzer, B. M. U., “Rutherford Backscattering as a Tool to Determine Electronic Stopping Powers in Solids,” Thin Solid Films, 19, 247 (1973).CrossRefGoogle Scholar
18. Hofmann, S., and Sanz, J. M., “Quantitative XPS Analysis of the Surface Layer of Anodic Oxides Obtained During Depth Profiling by Sputtering with 3 keV Ar+ Ions,” J. Trace Micropobe Tech., 1, 213 (19821983).Google Scholar
19. Malherbe, J. B., Hofmann, S., and Sanz, J. M., “Preferential Sputtering of Oxides: A Comparison of Model Predictions with Experimental Data,” Appl. Surf. Sci., 27, 355 (1986).CrossRefGoogle Scholar
20. Netterfield, R. P., Mueller, K. -H., McKenzie, D. R., Goonan, M. J., and Martin, P. J., “Growth Dynamics of Aluminum Nitride and Aluminum Oxide Thin- Films Synthesized by Ion-Assisted Deposition,” J. Appl. Phys., 63, 760 (1988).CrossRefGoogle Scholar
21. Mueller, K. -H., “Model for Ion Assisted Thin-Film Densification,” J. Appl. Phys., 59, 2803 (1986).CrossRefGoogle Scholar
22. Mueller, K. -H., “Ion-Beam-Induced Epitaxial Vapor-Phase Growth: A Molecular-Dynamics Study,” Phys. Rev., B35, 7906 (1987).CrossRefGoogle Scholar
23. Sigmund, P., “Theory of Sputtering, I. Sputtering Yield of Amorphous and Polycrystalline Targets,” Phys. Rev., 184, 383 (1969).CrossRefGoogle Scholar
24. Williams, F. L., Jacobson, R. D., McNeil, J. R., Exarhos, G. J. and McNally, J. J., “Optical Characteristics of Thin Films Deposited at Low Temperature Using Ion Assisted Deposition,” J. Vac. Sci. Technol., A 6, 2020 (1988).CrossRefGoogle Scholar
25. Carter, G., Armour, D. G., Donnelly, S. E., and Webb, R. P., “The Injection of Gas Ions into Solids: Their Trapping and Escape,” Rad. Eff., 53, 143 (1980).CrossRefGoogle Scholar
26. Andersen, H. H., and Sigmund, P., “Defect Distributions in Channeling Experiments,” Nucl. Instru. Meth., 38, 238 (1965).CrossRefGoogle Scholar
27. Higashino, H., Kawaguchi, T., Adachi, H., Makino, T., and Yamazaki, O., “High Speed Optical TIR Switches Using PLZT Thin-Film Waveguides on Sapphire,” Proc. of the 6th Intl. Meeting on Ferroelec., Kobe 1985, Jap. J. Appl. Phys., 24, supplement 24–2, 284 (1985).CrossRefGoogle Scholar
28. Adachi, H., Mitsuyu, T.,Yamazaki, O., and Wasa, K., “Bragg A-O Deflector Using A Piezoelectric PLZT Thin Film,” Proc. of the 6th Intl. Meeting on Ferroelect., Kobe 1985, Jap. J. Appl. Phys., 24, supplement 24–3, 287 (1985).CrossRefGoogle Scholar
29. Mukherjee, A., Brueck, S. R. J., and Wu, A. Y., “Electric Field Induced Second Harmonic Generation in PLZT,” to be published, (1989).CrossRefGoogle Scholar