Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-15T15:17:50.903Z Has data issue: false hasContentIssue false

Ion beam lithographic fabrication of ordered VO2 nanoparticle arrays

Published online by Cambridge University Press:  15 March 2011

R. Lopez
Affiliation:
Department of Physics and Astronomy and Vanderbilt Institute of Nanoscale Science andEngineering Vanderbilt University, Nashville, TN, 37235
J. Y. Suh
Affiliation:
Department of Physics and Astronomy and Vanderbilt Institute of Nanoscale Science andEngineering Vanderbilt University, Nashville, TN, 37235
L. C. Feldman
Affiliation:
Department of Physics and Astronomy and Vanderbilt Institute of Nanoscale Science andEngineering Vanderbilt University, Nashville, TN, 37235
R. F. Haglund Jr.
Affiliation:
Department of Physics and Astronomy and Vanderbilt Institute of Nanoscale Science andEngineering Vanderbilt University, Nashville, TN, 37235
Get access

Abstract

Long-range ordered arrays of vanadium dioxide nanoparticles are fabricated by pulsed laser deposition in a patterned layer of poly(methyl methacrylate) resist. The two- dimensional arbitrary pattern is created by focused ion beam exposure of the resist, followed by pulsed laser deposition and thermal annealing. Interaction of light with the nanoparticles is controlled by their geometrical arrangement as well as by the difference in optical properties displayed between the metallic and semiconducting phases of VO2. Arrays like this open opportunities to study optical resonances and interactions for nanoparticles in close proximity, in the framework of the metal-semiconductor phase transition in VO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Flytzanis, C., Hache, F., Klein, M. C., Richard, D. and Roussignol, Ph. in Nonlinear Optics in Composite materials in Progress in Optics XXIX, edited by Wolf, E..(Elsevier publishers, 1991).Google Scholar
2 Hulst, H.C. van de, Light Scattering by Small Particles. (Dover Publications, New York, 1957).Google Scholar
3 Joannopoulos, J. D., Villeneuve, P.R., and Fan, S., Nature (London), 386, 147 (1997).Google Scholar
4 Storhoff, J. J., Elghanian, R., Mucic, R. C., Murkin, C. A., Letsinger, R. L.. J. Am. Chem. Soc. 120, 1959 (1998).Google Scholar
5 Haes, A. J., Duyne, R. P. Van, J. Am. Chem. Soc. 124, 10596 (2002).Google Scholar
6 Khal, M., Voges, E., Kostrewa, S., Viets, C., Hil, W., Sens. Actuators B, 51, 285 (1998).Google Scholar
7 Maier, S. A., Brongersman, M. L., Kik, P. G., Atwater, H. A., Phys. Rev. B, 65 193408/193401 (2002).Google Scholar
8 Maier, S. A., Kik, P.G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E., and Requicha, A. A. G., Nature Materials, 2, 229 (2003).Google Scholar
9 Maier, S. A., Kik, P. G., Atwater, H. A., Appl. Phys. Lett. 81, 1714 (2002).Google Scholar
10 Morin, F. J., Phys. Rev. Lett 3, 34 (1959).Google Scholar
11 Goodenough, J. B., J. Solid State Chem. 3, 490 (1971).Google Scholar
12 Nihuoul, G., Leroux, Ch., Madigou, C., Durak, J., Solid State Ionics 117, 105 (1999).Google Scholar
13 Born, M. and Wolf, E., Principles of optics. (Cambridge press, Cambridge, 2002).Google Scholar
14 Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C. and Haglund, R. F. Jr., Phys. Rev. B, 65, 224113 (2002).Google Scholar
15 Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C., Haglund, R. F. Jr. Opt. Lett. 27, 1327 (2002).Google Scholar
16 Lopez, R., Boatner, L. A., Haynes, T. E., Feldman, L. C., Haglund, R. F. Jr., J. Appl. Phys. 92, 4031, (2002).Google Scholar