Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T10:40:46.829Z Has data issue: false hasContentIssue false

Ion Beam Induced Intermixing of Wsi0.45 on GaAs

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
A. G. Baca
Affiliation:
AT&T Bell Laboratories, Reading, PA 19603
C. S. Wu
Affiliation:
Hughes Aircraft Co., Torrance CA 90509
Get access

Abstract

The systematics of ion beam induced intermixing of WSi0.45 on GaAs have been studied after through-implantation of Si or O in the dose range 1013 − 5 × 1016 cm−2. SIMS profiling shows significant knock-on of Si and W into the GaAs at the high dose range in accordance with Monte Carlo simulations, but there is virtually no electrical activation (≤0.1%) of this Si after normal implant annealing (900°C, 10 sec). This appears to be a result of the high level of disorder near the metal-semiconductor interface, which is not repaired by annealing. This damage consists primarily of dislocation loops extending a few hundred angstroms below the end of range of the implanted ions. Extrapolation of the ion doses used in this work to the usual doses used in GaAs device fabrication would imply that ion-induced intermixing of WSix will not be significant in through-implantation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 52, 1794 (1988).CrossRefGoogle Scholar
2. Yokoyama, N., Ohnishi, T., Odanie, K., Onodera, H. and Abe, M., IEEE Trans. Electron. Dev. ED29 1541 (1982).Google Scholar
3. Jackson, T. N. and De Gelormo, J. F., J. Vac. Sci. Technol. B3 1676 (1988).Google Scholar
4. Callegari, A, Spiers, G. D., Magerlein, J. H. and Guthrie, H. C., J. Appl. Phys. 61 2054 (1987).Google Scholar
5. Kanamori, M., Nagai, K. and Nozacki, T., J. Vac. Sci. Technol. B5 1317 (1987).Google Scholar
6. Allan, D. A., IEEE Proc. 133 18 (1986).Google Scholar
7. Takatani, S., Matsuoka, N., Shigeta, J., Hashimoto, N. and Nakashima, H., J. Appl. Phys. 61 220 (1987).CrossRefGoogle Scholar
8. Yu, K. M., Cheung, S. K., Sands, T., Jaklevic, J. M., Cheung, N. W. and Haller, E. E., J. Appl. Phys. 60, 3235 (1986).Google Scholar
9. Baier, S. M., Lee, G. Y., Chung, H. K., Fure, B. J. and Cirillo, N. C., Electronics Lett. 23 224 (1987).CrossRefGoogle Scholar
10. Priddy, K. L., Kitchen, D. R., Gryzb, J. A., Litton, C. W., Henderson, T. S., Peng, C.-K., Kopp, W. F. and Morkoc, H., IEEE Trans. Electron. Dev. E34 175 (1987).Google Scholar
11. Stanchina, W. E., Clark, M. D., Vaidyanathan, K. V. and Juliens, R. A., J. Electrochem. Soc. 134 967 (1987).Google Scholar
12. Fernholz, G., Westphalen, R., Lange, W. and Beneking, H., Electronics Lett. 23 722 (1987).CrossRefGoogle Scholar
13. Lahav, A. G. and Wu, C. S. (to be published).Google Scholar