Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T21:01:17.827Z Has data issue: false hasContentIssue false

Ion Beam Induced Conductivity Changes in Glassy Carbon

Published online by Cambridge University Press:  25 February 2011

D. McCulloch
Affiliation:
Department of Applied Physics and Microelectronics and, Materials Research Centre, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, Victoria, 3001, Australia.
S. Prawer
Affiliation:
Department of Applied Physics and Microelectronics and, Materials Research Centre, Royal Melbourne Institute of Technology, GPO Box 2476V, Melbourne, Victoria, 3001, Australia.
Get access

Abstract

Ion beam irradiation of Glassy Carbon is shown to increase its resistivity by up to eight orders of magnitude. These changes in resistivity are correlated with results obtained from Raman spectroscopy and Reflection High Energy Electron Diffraction. At high doses of C implantation there is convincing evidence that ion beam irradiation partially graphitizes the surface of Glassy Carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jenkins, G.M. and Kawamura, K., Polymeric Carbons-Carbon Fibre Glass and Char (Cambridge University Press, 1976).Google Scholar
2 Pollock, J.T.A., Kenny, M. J., Wielunski, L.S. and Scott, M.D., NATO workshop on theory and applications of Ion beam modified Ceramics, Pisa, Italy, Sept. 1988.Google Scholar
3 Yoshida, K., Okuno, K., Katagiri, G., Ishitani, A., Takahashi, K. and Iwaki, M., Mat. Res. Soc. Proc. 100, 207 (1988).Google Scholar
4 Physical Properties of Graphite, Reynolds, W.N. (Elsevier Publishing Co. Ltd. 1968).Google Scholar
5 Yugo, S. and Kimura, T., Jap. J. Appl. Phys. 22, 1738 (1983).Google Scholar
6 Baker, D.F. and Bragg, R.H., Phys. Rev. B. 28 2219 (1983).Google Scholar
7 The Stopping and Range of ions in Solids, Ziegler, J.F., Biersack, J.P., and Littmark, U., Pergamon, N.Y. 1988.Google Scholar
8 Prawer, S., Ninio, F. and Blanchonette, I., Phys. Rev. B. (submitted).Google Scholar
9 Prawer, S., McCulloch, D., Rossouw, C.J. and Glanvill, S., TMS 1989 (submitted).Google Scholar
10 Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 58, 1126 (1970).Google Scholar
11 Elman, B.S., Dresselhaus, M.S., Dresselhaus, G., Maby, E.W. and Mazurek, H., Phys. Rev. B. 24, 1027 (1981).Google Scholar
12 Prawer, S., Kalish, R., Adel, M., and Richter, V., J. Appl. Phys., 61, 4492, (1987).Google Scholar
13 Gonzalez-Hernandez, J., Asomoza, R., Reyes-Mena, A., Rickards C, J., Chao, S.S., and Pawlik, D., J. Vac. Sci. Technol., A6 1798, (1988).Google Scholar