Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:24:14.090Z Has data issue: false hasContentIssue false

Ion Beam Assisted Texture Evolution during Thin Film Deposition of Metal Nitrides

Published online by Cambridge University Press:  17 March 2011

Bernd Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Jürgen W. Gerlach
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Stephan Six
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Bernd Rauschenbach
Affiliation:
Institut für Oberflächenmodifizierung, D-04318 Leipzig, Germany
Get access

Abstract

Ion beam assisted deposition, i.e., the bombardment of thin films with a beam of energetic particles has become a highly developed tool for the preparation of thin films. This technique provides thin films and coatings with modified microstructure and properties. In this paper examples are presented for the modifying of the structure: in-situ modification of texture during ion beam assisted film growth and ion beam enhanced epitaxy.

The biaxial alignment of titanium nitride films prepared on Si(111) by nitrogen ion beam assisted deposition at room temperature was studied. The bombardment perpendicular to the surface of the substrate causes an {001} alignment of crystallites. A 55° ion beam incidence angle produces both a {111} orientation relative to the surface and a {100} orientation relative to the ion beam. This results in a totally fixed orientation of the crystallites. The texture evolution is explained by the existence of open channeling directions.

Epitaxial, hexagonal gallium nitride films were grown on c-plane sapphire by low-energy nitrogen ion beam assisted deposition (≤ 25 eV). The ion energy was chosen to be less than the corrected bulk displacement energy to avoid the formation of ion-induced point defects in the bulk. The results show that GaN films with a nearly perfect {0002} texture are formed which have superior crystalline quality than films grown without ion irradiation. The mosaicity and the defect density are reduced.

By applying an assisting ion beam during pulsed laser deposition of aluminum nitride on the c-plane of sapphire, epitaxial, hexagonal films could be produced. The results prove the beneficial influence of the ion beam on the crystalline quality of the films. An optimum ion energy of 500 eV was found where the medium tilt as well as the medium twist of the crystallites was minimal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smidt, F.A., Intern. Mat. Rev. 35, 61 (1990).Google Scholar
2. Greene, J.E., “Low-energyion/surface interactions during crystal growth from the vapor phase: effects on nucleation and growth, defect creation and annihilation, microstructure evolution, and synthesis of metastable phases”, Handbook of Crystal Growth, Vol. 3: Thin Films and Epitaxy, ed. Hurle, D.T.J. (North-Holland, 1993) pp. 641682.Google Scholar
3. Buhl, R., Pulker, H.K. and Moll, E., Thin Solid Films 80, 265 (1981).Google Scholar
4. Kant, R.A. and Sartwell, S.D., J. Vac. Sci. Technol. A8, 861 (1990).Google Scholar
5. Rauschenbach, B. and Gerlach, J.W., Cryst. Res. Technol. 35, 675 (2000).Google Scholar
6. Nakamura, S. and Fasol, G., The blue laser diode (Springer, 1997).Google Scholar
7. Orton, J.W. and Foxon, C.T., Rep. Progr. Phys. 61, 1 (1998).Google Scholar
8. Pearton, S.J., Zolper, J.C., Shul, R.J. and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
9. Koleske, D.D., Wickenden, A.E., Henry, R.L., Twigg, M.E., Culbertson, J.C. and Gorman, R.J., MRS Internet J. Nitride Semicond. Res. 4S1, G3.70 (1999).Google Scholar
10. Anders, A. and Kühn, M., Rev. Sci. Instr. 69, 1340 (1998).Google Scholar
11. Gerlach, J.W., Schrupp, D., Volz, K., Zeitler, M., Rauschenbach, B. and Anders, A., Nucl. Instr. Meth. B148, 406 (1999).Google Scholar
12. Gerlach, J.W., Schwertberger, R., Schrupp, D., Rauschenbach, B., Neumann, H. and Zeuner, M., Surf. Coat. Technol. 128–129, 286 (2000).Google Scholar
13. Böer, K.W., Survey of Semiconductor Physics, Vol. 1 (Van Nostrand-Reinhold, 1990).Google Scholar
14. Brice, D.K., Tsao, J.Y. and Picraux, S.T., Nucl. Instr. Meth. B44, 89 (1989).Google Scholar
15. Ma, Z.Q. and Kido, Y., Thin Solid Films 359, 288 (2000).Google Scholar
16. Zolper, J.C., Crawford, M. Hagerott, Howard, A.J., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Yuan, C., Stall, R.A., Ramer, J., Hersee, S.D. and Wilson, R.G., Mat. Res. Soc. Symp. Proc. 395, 801 (1996).Google Scholar
17. Meinschien, J., Behme, G., Falk, F., Stafast, H., Appl. Phys. A 69, 683 (1999).Google Scholar
18. Zhang, W., Vargas, R., Goto, T., Someno, Y, Hirai, T., Appl. Phys. Lett. 64, 1359 (1993).Google Scholar
19. Rille, E., Zarwasch, R., Pulker, H. K., Thin Solid Films 228, 215 (1993).Google Scholar
20. Ebling, D.G., Rattunde, M., Steinke, L., Benz, K.W., Winnacker, A., J. Cryst. Growth 201/202, 411 (1999).Google Scholar
21. Vispute, R. D., Wu, H., Narayan, J., Appl. Phys. Lett. 67, 1549 (1995.Google Scholar
22. Norton, M. G., Kotula, P. G., Carter, C. B., J. Appl. Phys. 70, 2871 (1991).Google Scholar
23. Vispute, R. D., Narayan, J., Wu, H., Jagannadham, K., J. Appl. Phys. 77, 4724 (1995).Google Scholar
24. Six, S., Gerlach, J.W., Rauschenbach, B., Surf. Coat. Technol. (in press).Google Scholar